گروه صنایع شیمی رزن

مصالب مرتبط با رشته ی صنایع شیمیایی

معرفی وسایل آزمایشگاهی

 

بوته چيني (كروزه چيني):
بوته آزمايشگاهي ظرف مخروطي (مخروط ناقص) شبيه انگشتانه است كه ليه هاي آن كاملاً صاف و جداره هاي داخلي و خارجي آن صاف و صيقلي است. اگرچه بوته آزمايشگاهي را از جنس فلز (بويژه از نيكل). گرافيت و سفال (بوته گلي يا سفالي) نيز مي سازند اما اين بوته ها عمدتاً از جنس چيني تهيه مي شود و معمولاً داراي سرپوش است.
كاربرد: از بوته در آزمايشـگاه معمولي براي اندازه گيري آب تبلور كات كـبود يا سولفات مس زاج سبز يا سولفات آهنو نمك قليا يا كربنات سديم به فرمول و همچنين براي ذوب قند، پارافين جامد و… استفاده مي شود. چون بوته چيني در برابر گرما (تا حدودْ1200C) مقاوم است، از آن در آزمايشگاه هاي شيمي تجزيه براي خشك كردن رسوب كردن رسوب و پختن رسوب در كوره الكتريكي استفاده مي شود.
طرز كار: هنگام گرم كردن بوته بايد آن را با گيره ويژه اي (گيره بوته) برداشت و در حفره مثلث نسوز مناسب، قرار داد. مثلث نسوز طبق شكل، به شكل مثلث است كه از يك مثلث فلزي با سه قطعه روكش چيني نسوز ساخته شده است و از آن عمدتاً براي نگهداشتن بوته، به هنگام گرما دادن آن استفاده مي شود. يك مثلث نسوز هنگامي براي يك بوته مناسب است كه⅔ بوته در حفره آن قرار گيرد، در غير اين صورت حالت نامتعادلي پيدا مي كند و در اثر ضربه كوچكي ممكن است بشكند

چند نکته درباره بوته چینی

- اسيدها بر بوته اثر ندارند اما بازها سبب خوردگي بوته مي شوند. براي پاك كردن بوته تا حد امكان نبايد از اسيدها هم استفاده كرد.
- بوته هاي شكسـته را نبايد دور ريخـت زيرا از خرده هاي آنها براي آب گيري الكل و تهيه اتيلن مي توان استفاده كرد. (بوته شكسته را مي توان خرد كرده، به عنوان ماده آبگير مورد استفاده قرار داد)
- هنگامي كه از بوته براي سنجش هاي وزني استفاده مي شود نخست بايد بوته خالي را چندين بار در كوره الكتريكي در دماي معين (دماي لازم براي پختن رسوب) قرار داد و پس از سرد كردن، وزن كرد تا به وزن ثابت رسيد. اين كارها، يعني: گرم كردن، سرد كردن و وزن كردن بوته تا رسيدن به وزن ثابت پيش از پختن هر رسوب الزامي است.
شيشه ساعت
شيشه ساعت ابزاري است و همان طور كه از نامش پيداست شبيه شيشه ساعت است و در اندازه هاي مختلف ساخته مي شود.




كاربرد: از شيشه ساعت براي تبخير سريع مايع ها و محلول ها استفاده مي شود.
طرز استفاده: شيشه ساعت را مانند ابزار شيشه اي ديگر، بايد شست و شو داد و در صورت لزوم آن را با دستمال خشك كرد.
گاهي براي سرعت بخشيدن به عمل تبخير، شيشه ساعت را در دهانه بشر قرار مي دهند تا با جوشاندن آب درون بشر و گرم شدن شيشه ساعت با بخار آب جوش، عمل تبخير و تبلور سريعتر انجام گيرد.
قيف شيشه اي :
ابزار مخروطي شكل است كه در قسمت پايين آن لوله باريك و بلندي قرار دارد. نوك اين لوله مورب است. شيشه بدنه قيف معمولاً 60 درجه است.


كاربرد: از قيف براي انتقال محلول از ظرفي به ظرف ديگر استفاده مي شود (به عنوان مثال براي انتقال محلول از ظرفي به بورت، استوانه مدرج، بالن پيمانه اي، قيف شيردار، ارلن و… از قيف استفاده مي شود) براي اين كار، محلول موردنظر را نخست در بشـر ريخته سپس به كمك قيف تمـيز به ظرف دلخواه منتقل مي شود.
- از قيف براي جدا كردن مايع از جامد نيز مي توان استفاده كرد. اين كار در شيمي تجزيه وزني براي صاف كردن رسوبها از اهميت ويژه اي برخوردار است.
طرزكار: براي اين كار نخست بايد قيف راشست و خشك كرد سپس كاغذ صافي متناسب با قيف و با ذره هاي رسوب برگزيد (كاغذ صافي با قيف مناسب است كه پس از قرار دادن در قيف حدود 5/0 تا 5/1 سانتي متر از لبه قيف پايينتر باشد ـ و زماني متناسب با ذره هاي رسوب است كه آب زير صافي كاملاً زلال باشد.
براي گذاشتن كاغذ صافي در قيف ابتدا بايد آن را چندين با تا كرد، به شكل قيف درآورد و در آن گذاشت. براي اين كه كاغذ به قيف بچسبد بايد آن را خيس كرد و با انگشت تميز كاغذ صافي را كاملاً به جداره قيف چسباند. اگر كاغذ صافي كاملاً به قيف نچسبد و حبابهاي هوا بين كاغذ و جداره داخلي قيف بماند عمل صاف كردن كند مي شود.
قیف جدا کننده وسیله‌ای است که مایعات را بر اساس شاخص چگالی از هم جدا می‌کند مثلا اگر مخلوط یک ماده آلی و آب را که با هم قابل اختلاط نیستند در مخزن این وسیله بریزیم بر حسب چگالی، مواد در داخل این ظرف تفکیک می‌شود و ماده با چگالی بالاتر در زیر قرار میگیرد و وقتی شیر زیر ظرف را باز کنیم مایعی که دارای چگالی بالاتر است و در زیر قرار گرفته، از دستگاه خارج می‌گردد تا اینکه به مرز جدایی مایعات برسد، در چنین حالتی شیر را می‌بندیم و ظرف دوم را در زیر قیف جدا کننده قرار میدهیم و شیر را باز میکنیم و در نهایت قیف جدا کننده با موفقیت دو مایع مخلوط را از هم جدا می‌کند.


قطره چكان :

وسيله اي شيشه اي يا پلاستيكي است كه يك طرف آن داراي حباب لاستيكي قابل ارتجاع و طرف ديگر آن يك ميله شيشه اي (يا پلاستيكي) با نوك بسيار باريك است طول لوله قطره چكان با ارتفاع دهانه ظرف محتواي مايع مورد استفاده متناسب مي باشد و از چند سانتي متر تجاوز نمي كند.

كاربرد: معمولاً از قطره چكان براي ريختن معرفها (فنل فتالئين، تورنسل، هليانتين) و يا برداشتن محلول هايي كه بخار سـمي توليد مي كنند (مانند: اسيد كلريدريك غليظ، آب برم، آمونياك و…) و يا محلول هايي كه احتمال خطر آنها هنگام ريختن به دست و لباس زياد است (مانند: محلول اسيد سولفوريك غليظ يا اسيد نيتريك غليظ) استفاده مي كنند.
* در ظرف هاي قطره چكاني تيره رنگ، معمولاً بايد موادي را ريخت كه در اثر جذب نور تجزيه و يا تغيير مي كنند (مانند پرمنگنات پتاسيم، پراكسيدهيدروژن، اسيد نيتريك غليظ و…)
* در ظرف هاي قطره چكاني يا ظرف هاي درپوش ديگر، هيچ گاه نبايد محلول سود يا پتاس ريخت، زيرا از نوع مواد، هنگام تبخير و خشك شدن درِ ظروف را مسدود مي كنند و جدا كردن آنها بسيار دشوار خواهد بود.
طرز كار: هنگام كار كردن با قطره چكان ابتدا با فشار دادن به لاستيك، هواي درون ميله شيشه اي را بايد خالي كرد و آن را به داخل مايع قرار داد. سپس با برداشتن فشار از روي لاستيك، مايع را به طرف ميله شيشه اي كشيد. پس از بالا كشيدن مايع، از مايع داخل آن، براي آزمايش استفاده كرد.
انواع بالن:
1-ته گرد كه توانايي حرارت هاي بسيار بالا رادارد .2-ته صاف كه توانايي حرارت هاي بسير بالا را ندارد اما قابل ايستادن است 3-بالن حجمي: ظرفيشيشه اي با گردن باريك و دراز است كه بر روي آن خطّ نشانه حلقوي وجود دارد. گنجايشبالن حجمي با عددي كه بر روي آن نوشته شده است مشخص مي شود كه حدّ آن همان خط نشانهاست.

بالن حجمی



كاربرد: بالن حجمي براي 2 منظور به كار مي رود: يكي براي رقيق كردن محلول با غلظت معين، ديگري براي تهيه محلول هاي سنجيده يا استاندارد.
طرز استفاده: بالن حجمـي را معمولاً با قيفـي كه در دهانه آن قـرار مي گيرد، بايد پر كرد. نخست مي توان مايع يا محلول را با سرعت تا رسيدن سطح آن به نزديك خط نشانه در بالن حجمي ريخت براي پر كردن بالن تا خط نشانه، بهتر است از قطره چكان كمك گرفت و با ريختن قطره قطره‌ محلول موردنظر آن را به طور دقيق به خط نشانه رسانيد (اين عمل را اصطلاحاً به حجم رسانيدن مي نامند). براي دقت بيشتر بايد انحناي سـطح مايع يا محلول بر خطِ نشانه مماس باشـد. در اين حالت بايد چشم را طوري نگاهداشت كه نيم دايره خط نشانه سمت آزمايش كننده، نيمه ديگر خط نشانه پشتي را كاملاً بپوشاند (ديده نشود). چون از بالن حجمي براي سنجش هاي دقيق استفاده مي شود، رعايت اين نكته بسيار ضروري است

استوانه مدرج
لوله شيشه اي استوانه اي شكل، مشابه لوله آزمايش است كه در پايه اي از جنس پلاستيك جاي مي گيرد و يا عموماً داراي پايه پهن شيشه اي است كه مي تواند آن را روي ميز به طور قائم نگهدارد. لبه آن مانند بشر، برگشتگي شيارمانندي براي خالي كردن محلول دارد. تفاوت درجه بندي آن با بورت و پيپت در اين است كه درجه هاي كوچكتر آن در پايين قرار دارد.


كاربرد: ابزاري است كه در اندازه گيري حجم مايع ها به كار مي رود.
طرز استفاده: استوانه مدرج را بايد در جاي كاملاً صاف و مسطح قرار داد و هنگام ريختن يا برداشتن محلول، پايه آن را با دو انگشت محكم نگهداشت تا از افتادن و شكستن آن جلوگيري شود.


چند نكته: چون استوانه مدرج، برخلاف لوله آزمايش جاي خاصي ندارد. از اين رو بايد بي درنگ پس از انجام كار، آن را دور از دسترس، در جاي امني قرار داد. اگر لبه استوانه مدرج پريده باشد، نبايد آن را دور انداخت. زيرا با استفاده از لوله هاي پلاستيكي شفاف و مناسب مي توان از آنها دوباره استفاده كرد. براي اين منظور مي توان قسمت شكسته آن را با سوهان صاف كرد و حلقه اي از لوله پلاستيكي مناسب به لبه آن وصل و با باريك كردن يك گوشه لوله پلاستيكي از آن استفاده كرد. از استوانه مدرجي كه ارتفاع آنها در اثر شكسته شدن، خيلي كوتاه شده باشد، براي اندازه گيري چگالي مايع ها (آب، نفت، جيوه…) مي توان استفاده كرد.
 
بشر بشر يا ليوان آزمايشگاهي وسيله استوانه اي شكل است كه در اندازه هاي مختلف از شيشه و يا پلاستيك ساخته مي شود.



  • كاربرد: بشـر ممكن است ساده يا مدرج باشـد. از بشر مدرج اغلب براي برداشتن حجم معيني ازمايع ها هم استفاده مي شود. از بشر مدرج يا ساده، براي برداشتن مايع ها، گرم كردنمحلول ها (از جنس شيشه اي) تهيه‌ محلول، حل كردن مواد، انتقال محلول، رسوب گيري،تهيه مواد و غيره استفاده مي شود

طرز كار: پيش از هر كاري بايد بشر را شست. براي شستن بشر بايد با لوله شوي جداره داخلي و خارجي بشـر را ساييد تا مواد چسبنده به آن جدا شود، سپس آن را با آب معمولي شست. بسته به نوع كار مي توان بشر را مانند بورت يا پيپت شست و شو داد (يعني شستن، آب كشيدن با آب معمولي، كُر دادن با آب مقطر، كر دادن با محلول موردنظر كه بايد در بشر ريخته شود)
بيرون بشـر را پس از شست و شـو بايد با دسـتمال تميز خشك كرد، براي خشك كردن داخل آن مي توان از اين روش استفاده كرد:
- بشر را روي سه پايه و توري نسوز گذاشت و شعله چراغ گاز را دور تا دور گرداند. (شعله را نبايد داخل بشر برد زيرا اين عمل سبب شكستگي آن مي شود) تا كاملاً داخل آن خشك شود. بشر را تا مدتي به همان حال بايد باقي گذاشت تا سرد شود.
اسپاتول
ابزار چيني يا فلزي است كه داراي 2 قسمت مي باشد، يكي دسته و ديگري تيغه. كه كمي پهنتر است. از اسپاتول براي نرم كردن مواد جامد و برداشتن آن استفاده مي شود. لازم است يادآوري كنيم كه مواد شيميايي را نبايد با دست برداشت. براي برداشتن مواد ابزاري مانند: اسپاتول، انواع قاشق هاي چيني و پلاستيكي و يا فلزي را بايد به كار برد.


بورت

بورت وسيله اي شيشه اي به صورت لوله دراز و باريك است كه در انتهاي زيري آن محلي براي خارج شدن محلول وجود دارد. بورت معمولا برحسب ميلي ليتر درجه بندي و هر ميلي ليتر نيز معمولاً خود به ده قسمت برابر تقسيم مي شود.



كاربرد: در اندازه گيري حجم مايع ها به كار مي رود.
طرز استفاده: شير شيشه اي بورت را همواره بايد با انگشتهاي دست چپ گرفت و باز و بسته كرد. برتري اين كار در اين است كه شير به طرف داخل فشرده مي شود و از شُل شدن آن و چكه كردن مايع از بورت جلوگيري مي كند. درصورتي كه با گرفتن شير بورت با دست راست، شير به تدريج به طرف بيرن كشيده مي شود و در اين صورت احتمال دارد محلول از بورت چكه كند.

* هنگام استفاده از بورت بايد آن را شست. براي شستن آن به ترتيب از آب معمولي داغ. آب و صابون و سولفوكروميك (مخلوطي مناسب از دي كرومات پتاسيم و اسيد سولفوريك) استفاده مي كرد. نشانه تميز شدن بورت اين است كه قطره هاي آب به جداره داخلي آن نچسبد. پس از شستن بورت ابتدا بايد آن را با آب معمولي، آب كشيد و سپس با آب مقطر (كُر) داد. با اين عمل محلول قبلي از بورت خارج مي شود. اما براي خارج كردن آب مقطر آغشته به جدار داخلي بورت، بايد آن را يكبار با محلول مورد آزمايش نيز كُر داد. بيرون بورت را بايد با دستمال تميز خشك كرد. اين عمل به بهتر خوانده شدن درجه هاي بورت كمك مي كند.
- بايد توجه داشت كه هنگام پر كردن بورت لوله باريك پايين بورت (پس از شير بورت) كاملاً پر از مايع بوده و حباب هوا نداشته باشد. اگر بورت داراي شير شيشه اي است، با باز و بسته كردن ممكن است حباب هوا خارج نشود. در اين صورت، براي خارج كردن حباب هوا بايد نوك باريك بورت را در داخل مايع گذاشت و شير بورت را باز كرد و با مكيدن از دهانه بالايي بورت، قسمت باريك آن را از مايع پر كرد.


بالن تقطیری


(بالن با لوله جانبي): بالن تقطير مانند بالن ته گرد است، با اين تفاوت كه در گردن آن يك لوله جانبي توخالي و باريكي وجود دارد كه محل خروج مواد گازي است.



كاربرد: از بالن تقطير، علاوه بر تقطير مايع ها، مي توان در تهيه آب مقطر، تهيه اتيلن (آبگيري از الكل) تهيه گازهاي استيلن، هيدروژن، كلر، دي اكسيدگوگرد، دي اكسيدكربن و غيره استفاده كرد.
طرز استفاده: ابتدا بايد مانند هر ظرف شيشه اي آزمايشگاهي، بالن را شست. براي اين منظور بايد مقداري آب داخـل آن ريخت و با درپوش پلاسـتيكي يا با كف دست، دهانه آن را بست، سپس با تكان دادن، آن را شست و شو داد. در صورت تميز نشدن مي توان عمل شستن را طبق معمول با آب و با صابون و يا مواد شيميايي و با استفاده از لوله شوي ادامه داد تا مواد چسبيده به جداره و ته آن كاملاً جدا شود. پس از شستن بايد بيرون آن را با دستمال خشك كرد. براي خشك كردن داخل آن مانند بالن ته گرد به كمك گرم كردن، آن را خشك كرد.
ارلن:

ارلن (يا ارلن ماير) ظرف مخروط شكلي است كه در اندازه هاي متفاوت درست مي شود و قسمت بالاي آن باريكتر و اندكي برگشته و قيفي شكل است، بدينوسيله هم مي توان از ريختن مايع به بيرون جلوگيري كرد و هم مي توان مايع را به داخل آن آسانتر ريخت.

كاربرد: ارلن ممكن است ساده يا مدرج باشد. از نوع مدرج آن براي برداشتن حجم معيني از مايع يا تعيين تقريبي حجم مايع استفاده مي شود اما نوع ساده آن براي استفاده از كارهاي گوناگون مانند گرم كردن مايع ها است.
افزون بر آن يك نوع از ارلن داراي لوله جانبي است و به ارلن تخليه موسوم است، براي صاف كردن با خلأ و نيز تهيه مواد گازي و غيره استفاده مي شود.
* همان نكته هاي گفته شده درباره بشر (از قبيل شستن و گرم كردن و…) نيز در مورد ارلن رعايت شود.
کپسول چینی
كپسول چيني، ظرف ته گرد كاسه مانندي است كه دهانه بازي دارد. در لبه آن مانند بشر شياري وجود دارد كه به آسان ريختن مايع از آن كمك مي كند.

كاربرد: تبخير سريع محلول ها، ذوب كردن مواد (موم، پارافين و …) گرفتن آب تبلور. استفاده به عنوان ظرف توزين. براي معين كردن قابليت حل شدن مواد.
*شكسته هاي كپسول چيني را هم مانند بوته چيني نبايد دور ريخت (در تهيه اتيلن كاربرد دارد)
طرز استفاده: تبخير سريع محلول ها: براي اين كار كپسول را روي سه پايه و توري نسوز مي گذارند و گرما مي دهند. اگر هدف از تبخير محلول، خشك شدن آن و جدا كردن ماده جامد باشد، در آخر هر كار بايد كپسول را با پنس بوته نگهداشت و با همزن، محلول را همزد تا ذره هاي آن به بيرون پرتاب نشود.

هاون چيني
هاون چيني شبيه كپسول چيني است كه ضخامت بدنه آن بيشتر است و لبه آن ممكن است صاف باشد. اين ابزار داراي دسته اي است كه آن هم از جنس چيني مي باشد و از آن براي خرد كردن و نرم كردن مواد استفاده مي شود.
كاربرد: اجسـام و مواد بسـيار سـخت با عمل ساييدن در هاون به صورت كاملاً نرم و پودر شده درمي آيند.
طرز كار: ضمن كار كردن با هاون بايد آن را با دست چپ محكم نگهداشت و با دست راست دسته آن را به صورت چرخشي در هاون گرداند و فشار به آن وارد كرد تا در اثر چرخيدن مواد، ساييده و نرم شوند.
در پايان آزمايش، پس از پودر كردن مواد، بايد هاون و دسته آن را كاملاً تميز و خشك كرد. براي اين كار از لوله شـوي بايد استفاده كرد. اگر مواد چسبيده به هاون از طريق شست و شوي با آب جدا نشد، مي توان از اسيد رقيق براي تميز كردن هاون استفاده كرد. پس از پاك كردن فوري بايد هاون را آب كشيد و با دستمال تميز آن را خشك كرد و در جاي مطمئني قرار داد.
دسته هاون را نبايد روي ميز كار گذاشت. زيرا اين عمل سبب لغزيدن آن مي شود و در صورت افتادن و ضربه خوردن مي شكند. دسته هاون را هميشه بايد داخل هاون گذاشت. در مواقع ضروري اگر ناچار به برداشتن آن شديد، بايد آن را در جاي مطمئني قرار دهيد كه احتمال لغزيدن افتادن و شكستن آن وجود نداشته باشد.

دسيكاتور:
ظرف شيشه اي شـبيه قابلمه است داراي 2 قسمت: قسمت پايين آن: محل قرار دادن ماده نم گير(كلريدكلسيم بي آب، اسيد سولفوريك غليظ، آهك، اكسيدفسفر «V ») است و قسمت بالاي آن كه به وسيله صفحه مشبكي از قسمت پايين جدا مي شود: محل قرار دادن بوته يا كپسول است و محتواي ماده اي است كه به منظور خشك كردن (جذب CO2 و H2O موجود در هوا) در دسيكاتور قرار داده مي شود. طرز كار: هنگام كار كردن با دسيكاتور رعايت نكات زير لازم است: - چون سرپوش دسيكاتور لغزنده است، هنگام جابه جا كردن دسيكاتور، بايد سرپوش آن را با دست، محكم نگهداشت.
- لبه سرپوش دسيكاتور را با وازلين يا ماده چرب مخصوص كه سفت تر از وازلين است بايد چرب كرد تا محكم به دسيكاتور بچسبد و هوا نكشد. در ضمن در اثر چسبندگي زياد آن با قسمت بدنه، خطر ليز خوردن و افتادن آن كمتر مي شود.
- هنگام گذاشتن سرپوش دسيكاتور بايد لبه آن را به دهانه دسيكاتور نزديك كرد و روي دهانه به طرف جلو فشار داد تا درپوش همه دهانه را بپوشاند. هرگز نبايد مانند قابلمه، سرپوش را گذاشت و برداشت، زيرا به علت چرب بودن محل اتصال سرپوش و بدنه دسيكاتور انجام اين كار دشوار است و ممكن است در اثر بلند كردن سرپوش، بدنه دسيكاتور به همراه آن بلند شود و از درپوش جدا شود و به زمين بيفتد و بشكند.
- هنگامي كه بوته داغ در دسيكاتور گذاشته مي شود نبايد سرپوش دسيكاتور را فوري گذاشت. زيرا اگر بوته خيلي داغ باشد، پس از سرد شدن به علت تفاوت فشار بيرون و داخل دسيكاتور برداشتن درِ آن بسيار دشوار است.
پيپت:

معمولا 2 نوع پيپت در آزمايشگاه به كار مي رود:
1- حباب دار 2- ساده يا مدرج. يك پيپت حباب دار در وسط داراي مخزني است كه گنجايش پيپت روي آن ثبت شده است. در بالاي حباب در قسمت باريك يك خط نشانه (به صورت دايره سفيدرنگي) وجود دارد كه بايد پيپت را تا اين خط نشانه پُر كرد. پيپت ساده، مانند بورت درجه بندي شده است و صفر آن در بالا قرار دارد و بايد آن را مانند بورت روي درجه صفر تنظيم و تا آخر خالي كرد.

كاربرد: ابزاري ست كه در اندازه گيري حجم مايع ها به كار مي روند.
طرز استفاده: براي پر كردن پيپت، نخست بايد آن را در قسمت گود محلول قرار داد تا هنگام مكيدن محلول هوا داخل پيپت نشود. زيرا در اين صورت محلول به سرعت بالا مي آيد و وارد دهان مي شود (در صورت كم بودن محلول در ظرف). وقتي سطح محلول حدود 2 ميلي ليتر از خط نشانه گذشت، بايد دهانه پيپت را با انگشت بست و آن را با ظرف محلول بالا آورد تا هم سطح چشم شود و به طور عمودي نگاهداشت. با كم كردن فشار انگشت، قطره قطره، زيادي محلول را خارج كرد تا سطح زيرين مايع به خط نشانه برسد و در اين وضعيت دوباره با فشار انگشت بر دهانه پيپت مانع خارج شدن مايع شد. سپس بايد نوك پيپت را از محلول خارج كرد و در ظرفي كه محلول در آن بايد ريخته شود قرار داد. براي خالي كردن پيپت، فشار انگشت را بايد كم كرد. هنگام خارج كردن پيپت از ظرف دوم، ظرف را بايد كج كرد و نوك پيپت را در جايي كه محلول نباشد، به جداره ظرف تماس داد. به اين ترتيب قسمتي از مايع كه در نوك پيپت مانده خارج مي شود. براي خارج كردن اين قسمت از مايع نبايد به داخل پيپت فوت كرد.
- شستشوي پيپت مانند بورت است.

پووار:

از پووار براي مكش استفاده مي شود اما در صورتي كه مواد سمي باشند قبل از استفاده از پووار بايد از سالم بودن آن اطمينان حاصل كنيم و آن را با آب امتحان كنيم

طرز استفاده: دكمهA براي خالي كردن هواي داخل پووار است. دكمهB براي مكش مواد سمي است. دكمهE براي خالي كردن مواد مكش شده است.
كارهايي كه سبب شكستن ارلن و بشر مي شود
كارهايي كه سبب شكستن ارلن و بشر مي شود:
- گرما دادن شديد، هنگام خالي بودن ظرف
- گرما دادن شديد، هنگامي كه ظرف داراي ماده جامدي باشد.
- گرما دادن داخل ظرف با شعله چراغ گاز
- ريختن آب سرد بر روي آنها هنگامي كه داغ هستند.
- گرما دادن آنها با شعله مستقيم (بدون استفاده از توري نسوز)
- مرطوب بودن جداره آنها به هنگام گرما دادن.

ارلنمایر
ارلن مایر یک ظرف مخروطی باگردن نسبتا باریک در حجمهای مختلف است. از ارلن مایر معمولا برای مخلوط کردن و حتینگه داری مایعات و یا به عنوان جمع کننده محصول تقطیر در عملتقطیرو یا جمع کننده مایع خارج شده ازقیف جدا کنندهدر هنگام عملاستخراجنیزاستفاده میشود.
قیف بوخنر
یکی از وسایل آزمایشگاهی است که برایتصفیه و خالص سازیمواد به وسیله نیروی مکش، به کار برده می‌شود. این قیف معمولاّاز پرسلان درست شده ولی نوع شیشه‌ای و پلاستیکی آن نیز موجود می‌باشد. در بالای اینوسیله یک سیلندر سوراخ دار وجود دارد که آن را از قیف متمایز می‌سازد. قیف آقایبوخنر نیز طرحی مشابه دارد ولی برای مقدار کمی از مواد به کار می‌رود. مهمترینتفاوت این که ظرف آن کوچکتر می‌باشد. وسیله فیلتر کننده یک کاغذ صافی است که بر رویظرف قرار می‌گیرد و ماده مورد نظر روی آن ریخته می‌شود. سپس آب ماده ریخته شده توسطنیروی مکش و خلا به پایین سرازیر می‌شود. این وسیله معمولاً در آزمایشگاه‌های شیمیآلی برای جداسازی رسوبات بلورین مورد استفاده قرار می‌گیرد. نیروی مکش باعث می‌شودکه که آب اضافی آنها خارج شده و بلورهای خالص به دست آیند. همچنین می‌توان برایخالص سازی بیشتر از حرارت و یا دیگر روش‌ها نیز استفاده کرد. تصور می‌شود این قیفمتعلق به برنده جایزه نوبل ادوارد بوخنر باشد ولی در حقیقت این وسیله توسط یکشیمیدان صنعتی به نام ارنست بوخنر ساخته شده‌است.
چراغ گاز و روش استفاده از آن:
چراغ بونزن كه شعله ي آن به طور مخروطي شكل است متداولترين چراغ آزمايشگاهي است.
شعله ي آن از دو قسمت تشكيل شده است كه قسمت مخروطي شكل داخلي كه رنگ آبي دارد (قسمت كاهش) و قسمت مخروطي شكل خارجي آن كه بنفش است قسمت اكسايش شعله است.براي گرم كردن ظروف از قسمتي كه بين ابن دو مخروط قرار دارد استفاده مي شود.
روش روشن كردن چراغ گاز بونزن:
اساس كار در تمام چراغ ها يكسان است . براي روشن كردن ابتدا كبريتي در كنار دهانه ي لوله ي چراغ روشن مي كنيم سپس شير اصلي را باز كرده و گاز مشتعل مي گردد. آنگاه به وسيله ي استوانه ي متحرك دريچه تنظيم ورود هوا ، شعله ي گاز را تنظيم مي كنيم تا جريان هوا ، اكسيژن كافي را برساند.


 

+ نوشته شده در  شنبه بیست و نهم مهر 1391ساعت 11:4  توسط محمدرضا خسروی(MR)  | 

سلام خدمت دوستان گلم در شهرستان رزن از دوستان دعوت می کنم تا من رو در ساخت پاورپوینت دروس اختصاصی یاری کنم در صورت تمایل با شماره ی ۰۹۳۵۶۳۳۶۰۸۹تماس بگیرید.

                                                                      با تشکر محمدرضا خسروی

+ نوشته شده در  یکشنبه هفتم اسفند 1390ساعت 22:8  توسط محمدرضا خسروی(MR)  | 

شیمی رنگ

رنگها را معمولا براساس خواص آنها و ساختمان ماده اصلی (ساختمان شیمیایی مواد) طبقه بندی می‌کنند. روش دیگر طبقه بندی رنگها براساس روش مصرف آنها در رنگرزی می‌باشد. روش و تکنیک رنگرزی به ساختمان ، طبیعت الیاف یا شئ مورد رنگرزی بستگی دارد. به عبارت دیگر رنگرزی پشم و ابریشم و دیگر الیاف به دست آمده از حیوانات با رنگرزی پنبه و الیاف به دست آمده از گیاهان تفاوت دارد.

نقش ساختمان شیمیایی الیاف در تعیین رنگ مورد نیاز
در رنگرزی همیشه ساختمان شیمیایی الیاف تعیین کننده نوع رنگ مورد نیاز و تکنیک رنگرزی می‌باشد. به عنوان مثال الیاف حیوان مانند پشم و ابریشم از پروتئین تشکیل شده‌اند و دارای گروههای اسیدی و بازی می‌باشند. این گروهها نقاطی هستند که در آنها مولکول رنگ خود را به الیاف متصل می‌کند. پس برای رنگرزی این گونه الیاف باید از رنگهایی که دارای بنیان اسیدی و بازی هستند استفاده کرد.

پنبه یک کربوهیدرات می‌باشد و تنها محتوی پیوندهای خنثای اتری و گروههای هیدروکسیل است. در این نقاط پیوندهای هیدروژنی بین الیاف و رنگ ایجاد می‌شود. پس باید از رنگهای متناسب با خصوصیات الیاف پنبه‌ای استفاده کرد. متصل کردن رنگ به الیاف مصنوعی و سنتزی مانند پلی اولفین‌ها و هیدروکربنها که کاملا عاری از گروههای قطبی هستند، تکنیک و روش دیگری را می‌طلبد. بر اساس روش رنگرزی به صورت زیر دسته‌بندی می‌شود.

رنگهای مستقیم یا رنگهای جوهری
این دسته از رنگها دارای گروهها و عوامل قطبی مانند عوامل اسیدی و بازی هستند و با استفاده از این گروهها ، رنگ با الیاف ترکیب می‌شود. برای رنگرزی پارچه با اینگونه رنگها فقط کافی است که پارچه را در محلول آبی و داغ رنگ فرو ببریم. اسید پیکریک و ماریتوس زرد از جمله این رنگها هستند. هر دو رنگ ، اسیدی بوده و با گروههای آمینه الیاف پروتئینی ترکیب می‌شوند. نایلون نیز که یک پلی‌آمید است، با این رنگها قابل رنگرزی است.

رنگ دانه‌ای
این دسته از رنگها شامل ترکیباتی هستند که می‌توانند با برخی از اکسیدهای فلزی ترکیب شده و نمکهای نامحلول و رنگی که لاک نامیده می‌شوند، تشکیل دهند. روش رنگرزی با این رنگها از کهن‌ترین روشهای تثبیت رنگ روی الیاف بوده است. این رنگها بیشتر برای رنگرزی ابریشم و پنبه بکار می‌رود. در رنگرزی با رنگهای دانه‌ای پارچه یا الیاف ، رنگی به نظر می‌رسند. چون الیاف توسط لایه‌ای از رسوب رنگین پوشانده می‌شود. برای ایجاد دندانه روی رنگها معمولا از اکسیدهای آلومینیوم ، کروم و آهن استفاده می‌شود. آلیزارین نمونه‌ای از این رنگها می‌باشد.

رنگ خمیری
رنگ خمیری ماده‌ای است که در شکل کاهش یافته ، محلول در آب بوده و ممکن است بی‌رنگ هم باشد. در این حالت الیاف به این رنگ آغشته شده و پس از جذب رنگ توسط الیاف ، آنها را از خمره خارج کرده و در معرض هوا با یک ماده شیمیایی اکسید کننده قرار می‌دهند. در این مرحله رنگ اکسید شده و به صورت رنگین و نامحلول در می‌آید. رنگهای باستانی ایندیگو و تیریان از این جمله‌اند.



رنگ واکنشی
این رنگها که تحت عنوان رنگهای ظاهر شونده هم شناخته می‌شوند، در درون خود پارچه ، تشکیل شده و ظاهر می‌گردند. مثال مهمی از این گروه رنگها ، رنگهای آزو می‌باشند. رنگرزی با این رنگها به این صورت است که پارچه را در محلول قلیایی ترکیبی که باید رنگ در آن مشتق شود (فنل یا نفتول) فرو می‌بریم. سپس پارچه را در محلول سرد آمین دی ازت دار شده در داخل خود الیاف انجام شده و رنگ تشکیل می‌گردد. به رنگی که به این صورت حاصل می‌شود رنگ یخی نیز می‌گویند، زیرا برای پایداری و جلوگیری از تجزیه نمک دی آزونیوم دمای پائین ضرورت دارد.

رنگ پخش شونده
این دسته از رنگها در خود الیاف محلول هستند، اما در آب نامحلول می‌باشند. رنگهای پخش شونده در رنگرزی بسیاری از الیاف سنتزی بکار می‌روند. به این الیاف گاهی اوقات الیاف آبگریز نیز گفته می‌شود. معمولا ساختمان شیمیایی آنها فاقد گروههای قطبی است. روش رنگرزی به اینگونه است که رنگ به صورت پودر نرم در بعضی از ترکیبات آلی مناسب (معمولا ترکیبات فنل) حل می‌شود و در دما و فشار بالا در حمام‌های ویژه به الیاف منتقل می‌شود.



+ نوشته شده در  دوشنبه یکم اسفند 1390ساعت 21:4  توسط محمدرضا خسروی(MR)  | 

نانو تکنولوژی

یک نانومتر چقدر است؟
یک نانومتر یک میلیاردم متر (10-9 m) است. این مقدار حدودا چهار برابر قطر یک اتم است. مکعبی با ابعاد 2.5 نانومتر ممکن است حدود 1000 اتم را شامل شود. کوچکترین آی سیهای امروزی با ابعادی در حدود 250 نانومتر در هر لایه به ارتفاع یک اتم ، حدود یک میلیون اتم را در بردارند. در مقایسه یک جسم نانومتری با اندازه‌ای حدود 10 نانومتر ، هزار برابر کوچکتر از قطر یک موی انسان است.

امکان مهندسی در مقیاس مولکولی برای اولین بار توسط ریچارد فاینمن (R.Feynnman) ، برنده جایزه نوبل فیزیک مطرح شد. فاینمن طی یک سخنرانی در انستیتو تکنولوژی کالیفرنیا در سال 1959 اشاره کرد که اصول و مبانی فیزیک امکان ساخت اتم به اتم چیزها را رد نمی‌کند. وی اظهار داشت که می‌توان با استفاده از ماشینهای کوچک ماشینهایی به مراتب کوچکتر ساخت و سپس این کاهش ابعاد را تا سطح خود اتم ادامه داد.

همین عبارتهای افسانه وار فاینمن راهگشای یکی از جذابترین زمینه‌های نانو تکنولوژی یعنی ساخت روباتهایی در مقیاس نانو شد. در واقع تصور در اختیار داشتن لشکری از نانو ماشینهایی در ابعاد میکروب که هر کدام تحت فرمان یک پردازنده مرکزی هستند، هر دانشمندی را به وجد می‌آورد. در رویای دانشمندانی مثل جی استورس هال (J.Storrs Hall) و اریک درکسلر (E.Drexler) این روباتها یا ماشینهای مونتاژکن کوچک تحت فرمان پردازنده مرکزی به هر شکل دلخواهی در می‌آیند. شاید در آینده‌ای نه چندان دور بتوانید به کمک اجرای برنامه ای در کامپیوتر ، تخت خوابتان را تبدیل به اتومبیل کنید و با آن به محل کارتان بروید.


 

 

 

چرا این مقیاس طول اینقدر مهم است؟
خواص موجی شکل (مکانیک کوانتومی) الکترونهای داخل ماده و اثر متقابل اتمها با یکدیگر از جابجایی مواد در مقیاس نانومتر اثر می‌پذیرند. با تولید ساختارهایی در مقیاس نانومتر ، امکان کنترل خواص ذاتی مواد ازجمله دمای ذوب ، خواص مغناطیسی ، ظرفیت بار و حتی رنگ مواد بدون تغییر در ترکیب شیمیایی بوجود می‌آید. استفاده از این پتانسیل به محصولات و تکنولوژیهای جدیدی با کارآیی بالا منتهی می‌شود که پیش از این میسر نبود.

نظام سیستماتیک ماده در مقیاس نانومتری ، کلیدی برای سیستمهای بیولوژیکی است. نانوتکنولوژی به ما اجازه می‌دهد تا اجزاء و ترکیبات را داخل سلولها قرار داده و مواد جدیدی را با استفاده از روشهای جدید خود_اسمبلی بسازیم. در روش خود_اسمبلی به هیچ روبات یا ابزار دیگری برای سرهم کردن اجزاء نیازی نیست. این ترکیب پر قدرت علم مواد و بیوتکنولوژی به فرآیندها و صنایع جدیدی منتهی خواهد شد.

ساختارهایی در مقیاس نانو مانند نانو ذرات و نانولایه‌ها دارای نسبت سطح به حجم بالایی هستند که آنها را برای استفاده در مواد کامپوزیت ، واکنشهای شیمیایی ، تهیه دارو و ذخیره انرژی ایده‌ال می‌سازد. سرامیکهای نانوساختاری غالبا سخت‌تر و غیرشکننده‌تر از مشابه مقیاس میکرونی خود هستند. کاتالیزورهای مقیاس نانو راندمان واکنشهای شیمیایی و احتراق را افزایش داده و به میزان چشمگیری از مواد زائد و آلودگی آن کم می‌کنند. وسایل الکترونیکی جدید ، مدارهای کوچکتر و سریعتر و … با مصرف خیلی کمتر می‌توانند با کنترل واکنشها در نانوساختار بطور همزمان بدست آیند. اینها تنها اندکی از فواید و مزایای تهیه مواد در مقیاس نانومتر است.


 

 

 

منافع نانوتکنولوژی چیست؟
مفهوم جدید نانوتکنولوژی آنقدر گسترده و ناشناخته است که ممکن است روی علم و تکنولوژی در مسیرهای غیرقابل پیش بینی تأثیر بگذارد. محصولات موجود نانوتکنولوژی عبارتند از: لاستیکهای مقاوم در برابر سایش که از ترکیب ذرات خاک رس با پلیمرها بدست آمده‌اند، شیشه‌هایی که خودبه خود تمیز می‌شوند، مواد دارویی که در مقیاس نانو ذرات درست شده‌اند، ذرات مغناطیسی باهوش برای پمپهای مکنده و روان سازها ، هد دیسکهای لیزری و مغناطیسی که با کنترل دقیق ضخامت لایه‌ها از کیفیت بالاتری برخوردارند، چاپگرهای عالی با استفاده از نانو ذرات با بهترین خواص جوهر و رنگ دانه و ... .
قابلیتهای محتمل تکنیکی نانوتکنولوژی
محصولات خود_اسمبل
کامپیوترهایی با سرعت میلیاردها برابر کامپیوترهای امروزی
اختراعات بسیار جدید (که امروزه ناممکن است)
سفرهای فضایی امن و مقرون به صرفه
نانوتکنولوژی پزشکی که در واقع باعث ختم تقریبی بیماریها ، سالخوردگی و مرگ و میر خواهد شد.
دستیابی به تحصیلات عالی برای همه بچه‌های دنیا
احیاء و سازماندهی اراضی
برخی کاربردها


 

 

 

مدلسازی مولکولی و نانوتکنولوژی
در سازمان دهی و دستکاری مواد در مقیاس نانو ، لازم است تمامی ابزار موجود جهت افزایش کارایی مواد و وسایل بکار گرفته شود. یکی از این ابزار ، شیمی تحلیلی ، خصوصا مدل ‌سازی مولکولی و شبیه ‌سازی است. امروزه ابزار تحقیقاتی فراگیری مانند روشهای شیمی تحلیلی مزیتهای فراوانی نسبت به روشهای تجربی دارند. میهیل یورکاز شرکتContinental Tire North America می‌گوید:"روشهای تجربی مستلزم بهره‌گیری از نیروی انسانی ، شیمیایی ، تجهیزات ، انرژی و زمان است. شیمی تحلیلی این امکان را برای هر فرد مهیا می‌سازد که فعالیتهای شیمیایی چندگانه‌ای را در 24 ساعت شبانه ‌روز انجام دهد. شیمیدانها می‌توانند با انجام آزمایشها توسط رایانه ‌، احتمال فعالیتهای غیرمؤثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند.

نتیجه نهایی این امر ، کاهش اساسی در هزینه‌های آزمایشگاهی (مانند مواد ، انرژی ، تجهیزات) و زمان است." از طرف دیگر ، در شیمی تحلیلی سرمایه‌ گذاری اولیه جهت تهیه نرم‌افزار و هزینه‌های وابسته از جمله سخت‌افزار جدید ، آموزش و تغییرات پرسنل بسیار بالا خواهد بود. ولی با بکار گیری هوشمندانه این ابزار می‌توان هریک از هزینه‌های اولیه را نه تنها از طریق صرفه‌جویی در هزینه آزمایشگاه بلکه بوسیله فراهم نمودن دانشی که منجر به بهینه ‌سازی فرآیندها و عملکردها می‌شود، جبران ساخت.

این موضوع برای شیمیدانها بسیار مناسب است، ولی روشهای شبیه‌سازی چطور می‌توانند برای نانوتکنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو ، زمانی آشکار می‌شود که شگفتی جهان دانشمندان نظری وارد عمل می‌شود. در اینجا هنگامی که دانشمندان قصد قرار دادن هر یک از اتمها را در محل مورد نظر دارند قوانین کوانتوم وارد صحنه می‌شود. پیش‌بینی رفتار و خواص در محدودهای از ابعاد برای نانوتکنولوژیستها حیاتی است.

مدل‌سازی رایانه‌ای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیه‌سازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیش‌بینی رفتار در مقیاس نانو و یا حدود آن قادر می‌سازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها میپردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیهسازی مولکولی عمل می‌کنند. می‌توان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساخته‌شده در مقیاس نانو و میکرو بکار برد.


 


مدل ‌سازی خاک‌ رس
محققین دانشگاه لندن در انگلستان و دانشگاه Paris Sud در فرانسه ، شبیه‌سازیهایی بر اساس مکانیک کوانتوم برای مطالعه و کامپوزیتهای خاک ‌رس–پلیمر بکار برده‌اند. امروزه این ترکیبات یکی از موفق‌ترین مواد نانوتکنولوژی هستند، زیرا بطور همزمان مقاومت بالا و شکل‌پذیری از خود نشان می‌دهند؛ خواصی که معمولاً در یکجا جمع نمی‌شوند. نانو کامپوزیتهای پلیمر–خاک رس می‌توانند با پلیمریزاسیون در جا تهیه شوند؛ فرآیندی که شامل مخلوط کردن مکانیکی خاک معدنی با مونومر مورد نیاز است. بنابراین مونومر در لایه درونی جای‌گذاری می‌شود (خودش را در لایه‌های درون ورقه‌های سفال جای می‌دهد) و تورق کل ساختار را افزایش می‌دهد. پلیمریزاسیون ادامه می‌یابد تا سبب پیدایش مواد پلیمری خطی و همبسته گردد.


 

 

 

دانشمندان با بکارگیری Castep (یک برنامه مکانیک کوانتوم که نظریه کارکردی چگالی را بکار می‌گیرد) تحول کشف شده در این روش را که پلیمریزاسیون میان ‌گذار خود کاتالیست نامیده می‌شود مطالعه کردند. این پروژه ، دانشی نظری در زمینه ساز و کار این فرآیند جدید را بوسیله مشخص کردن نقش سفال در کامپوزیت فراهم نمود. ضروری است که دانش حاصل از شبیه‌سازیها ، جهت کنترل و مهندسی نمودن فعل و انفعالات پلیمر-سیلیکات به کمک دانشمندان آید.

دانشمندان در شرکت BASF شبیه‌ سازیهای مقیاس میانی را برای بررسی علم و رفتار ریزواره‌ها بکاربردند. ریزواره‌ها ذراتی کروی شکل با ابعاد نانو هستند که به صورت خود به خود در محلولهای کوپلیمری ایجاد می‌شوند و در زمینه‌هایی مانند سنسورها وسایل آرایشی و دارو رسانی کاربرد دارند. دانشمندانBASF با بکار گیری esoDyn ، یک ابزار شبیه ‌سازی برای پیش‌بینی ساختارهای مقیاس میانی مواد متراکم محلولهای تغلیظ ‌شده کوپلیمرهای آمفی‌فیلیک را بررسی کردند.

شبیه‌سازیها مشخص نمود که کدام شرایط مولکولی و فرمولی به شکل‌گیری "ریزواره‌های معکوس" مانند نانو ذرات آب در یک محیط فعال منتهی‌ میشود. چنین نتایجی برای درک رفتار عوامل فعال سطحی ضروری هستند. به کمک روشهایی مانند پرتاب محلول در آزمایشگاه می‌توان به نتایجی در این زمینه دست یافت، اما دستیابی به این نتایج ماهها به طول می‌انجامد، درحالی که آزمایشهای شبیه‌سازی شده تنها طی چند روز نتیجه می‌دهند.

محدودیتهای این روشها چیست؟


در حالیکه امروزه ابزار مدلسازی در سطح کوانتومی و مقیاس میانی به خوبی توسعه یافته‌اند، همچنان محدودیتهایی در این عرصه وجود دارد. برای مثال کاربردهایی در زمینه وسایل الکترونیک مستلزم انجام محاسبات مکانیک کوانتوم برای تعداد اتمهایی بیش از روشهای حاضر می‌باشد که بیش از توان عملیاتی منابع محاسبه‌گر فعلی است. همچنین مدلسازی کل وسایل امکان‌پذیر نیست، بویژه عملکردها و خواص آنها.

+ نوشته شده در  سه شنبه هجدهم بهمن 1390ساعت 15:55  توسط محمدرضا خسروی(MR)  | 

نانو تنولوژی و کاربرد های ان

علوم و فناوري نانو، عنصري اساسي در درك بهتر طبيعت در دهه‌هاي آتي خواهد بود. از جمله موارد مهم در آينده، همكاري‌هاي تحقيقاتي ميان ‌رشته‌ا‌ي، آموزش خاص و انتقال ايده‌ها و افراد به صنعت خواهد بود. بخشي از تأثيرات و کاربردهاي نانوتکنولوژي به شرح زير مي‌باشد:

1- توليد مواد و محصولات صنعتي :

نانوتكنولوژي تغيير بنياني مسيري است كه در آينده، موجب ساخت مواد و ابزارها خواهد شد. امكان سنتز بلوك‌هاي ساختماني نانو با اندازه و تركيب به دقّت كنترل‌شده و سپس چيدن آنها در ساختارهاي بزرگتر، كه داراي خواص و كاركرد منحصربه‌فرد باشند، انقلابي در مواد و فرآيندهاي توليد آنها، ايجاد مي‌كند. محقّقين قادر به ايجاد ساختارهايي از مواد خواهند شد كه در طبيعت نبوده و شيمي مرسوم نيز قادر به ايجادشان نبوده‌است. برخي از مزاياي نانوساختارها عبارتست از: مواد سبك‌تر، قوي‌تر و قابل برنامه‌ريزي ؛ كاهش هزينة عمر كاري از طريق كاهش دفعات نقص فنّي ؛ ابزارهايي نوين بر پاية اصول و معماري جديد ؛ بكارگيري كارخانجات مولكولي يا خوشه‌ا‌ي كه مزيّت مونتاژ مواد در سطح نانو را دارند.

2- پزشکي و بدن انسان:


رفتار مولكولي در مقياس نانومتر، سيستمهاي زنده را اداره مي‌كند. يعني مقياسي كه شيمي، فيزيك، زيست‌شناسي و شبيه‌سازي كامپيوتري، همگي به آن سمت درحال گرايش هستند.
• فراتر از سهل‌شدن استفادة بهينه از دارو، نانوتكنولوژي مي‌تواند فرمولاسيون و مسيرهايي براي رهايش دارو ( Drug Delivery ) تهيه كند، كه به‌نحو حيرت‌انگيزي توان درماني داروها را افزايش مي‌دهد.
• مواد زيست‌سازگار با كارآيي بالا، از توانايي بشر در كنترل نانوساختارها حاصل خواهدشد. نانومواد سنتزي معدني و آلي را مثل اجزاي فعّال، مي‌توان براي اعمال نقش تشخيصي (مثل ذرات كوانتومي كه براي مرئي‌سازي بكار مي‌رود) درون سلولها وارد نمود.
• افزايش توان محاسباتي بوسيلة نانوتكنولوژي، ترسيم وضعيت شبكه‌هاي ماكرومولكولي را در محيط‌هاي واقعي ممكن مي‌سازد. اينگونه شبيه‌سازي‌ها براي بهبود قطعات كاشته‌شدة زيست‌سازگار در بدن و جهت فرآيند كشف دارو، الزامي خواهدبود.

3- دوام ‌پذيري منابع كشاورزي، آب، انرژي، مواد و محيط زيست پاك:


نانوتكنولوژي چنان چه ذكر شد، منجر به تغييراتي شگرف در استفاده از منابع طبيعي، انرژي و آب خواهد شد و پساب و آلودگي را كاهش خواهدداد. همچنين فنّاوري‌هاي جديد، امكان بازيافت و استفادة مجدد از مواد، انرژي و آب را فراهم خواهند كرد. در زمينه محيط زيست ، علوم و مهندسي نانو، مي‌تواند تأثير قابل ملاحظه‌ا‌ي ، در درك مولكولي فرآيندهاي مقياس نانو كه در طبيعت رخ مي‌دهد ؛ در ايجاد و درمان مسائل زيست‌محيطي از طريق كنترل انتشار آلاينده‌ها ؛ در توسعة فنّاوري‌هاي "سبز" جديد كه محصولات جانبي ناخواستة كمتري دارند و يا در جريانات و مناطق حاوي فاضلاب، داشته‌باشد. لازم به ذكراست، نانوتكنولوژي توان حذف آلودگي‌هاي كوچك از منابع آبي (كمتر از 200 نانومتر) و هوا (زير 20 نانومتر) و اندازه‌گيري و تخفيف مداوم آلودگي در مناطق بزرگتر را دارد.
در زمينه انرژي ، نانوتكنولوژي مي‌تواند به‌طور قابل ملاحظه‌ا‌ي كارآيي، ذخيره‌سازي و توليد انرژي را تحت تأثير قرار داده مصرف انرژي را پايين بياورد . به عنوان مثال، شركتهاي مواد شيميايي، مواد پليمري تقويت‌شده با نانوذرات را ساخته‌اند كه مي‌تواند جايگزين اجزاي فلزي بدنة اتومبيلها شود. استفاده گسترد ه ازاين نانوكامپوزيت‌ها مي‌تواند ساليانه 5/1 ميليارد ليتر صرفه‌جويي مصرف بنزين به ‌همراه داشته‌باشد .
يا انتظار مي‌رود تغييرات عمده‌ا‌ي در فنّاوري روشنايي در 10 سال آينده رخ دهد. مي‌توان نيمه‌هادي‌هاي مورد استفاده در ديودهاي نوراني (LED) ها را به مقدار زياد در ابعاد نانو توليد كرد. در ا مريکا ، تقريبا" 20% كل برق توليدي، صرف روشنايي (چه لامپهاي التهابي معمولي و چه فلوئورسنت) مي‌شود. مطابق پيش‌بيني‌ها در 10 تا 15 سال آينده ، پيشرفتهايي از اين دست مي‌تواند مصرف جهاني را بيش از 10% كاهش دهد كه 100 ميليارد دلار در سال صرفه‌جويي و 200 ميليون تن كاهش انتشار كربن را به‌همراه خواهدداشت .

4- هوا  و فضا :


محدوديت‌هاي شديد سوخت براي حمل بار به مدار زمين و ماوراي آن، و علاقه به فرستادن فضاپيما براي مأموريتهاي طولاني به مناطق دور از خورشيد ، كاهش مداوم اندازه، وزن و توان مصرفي را اجتناب‌ناپذير مي‌سازد. مواد و ابزارآلات نانوساختاري، اميد حل اين مشكل را بوجود آورده‌است.
"نانوساختن" ( Nanofabrication ) همچنين در طرّاحي و ساخت مواد سبك‌وزن، پرقدرت و مقاوم در برابر حرارت، موردنياز براي هواپيماها، راكت‌ها، ايستگاههاي فضايي و سكّوهاي اكتشافي سيّاره‌ا‌ي يا خورشيدي، تعيين‌كننده است. همچنين استفادة روزافزون از سيستمهاي كوچك‌شدة تمام خودكار، منجر به پيشرفتهاي شگرفي در فنّاوري ساخت و توليد خواهدشد. اين مسأله با توجه به اينكه محيط فضا، نيروي جاذبة كم و خلأ بالا دارد، موجب توسعة نانوساختارها و سيستمهاي نانو – كه ساخت آنها در زمين ممكن نيست- در فضا خواهدشد.


5- امنيت ملّي:


برخي کاربردهاي دفاعي نانوتکنولوژي عبارتند از: تسلط اطّلاعاتي از طريق نانوالكترونيك پيشرفته بعنوان يك قابليت مهم نظامي ، امكان آموزش مؤثّرتر نيرو، به كمك سيستمهاي واقعيت مجازي پيچيده‌تر حاصله از الكترونيك نانوساختاري ، استفادة بيشتر از اتوماسيون و رباتيك پيشرفته براي جبران كاهش نيروي انساني نظامي، كاهش خطر براي سربازان و بهبود كارآيي خودروهاي نظامي ، دستيابي به كارآيي بالاتر (وزن كمتر و قدرت بيشتر) موردنياز در صحنه‌هاي نظامي و در عين‌حال تعداد دفعات نقص فنّي كمتر و هزينة كمتر در عمر كاري تجهيزات نظامي ، پيشرفت در امر شناسايي و در نتيجه مراقبت عوامل شيميايي، زيستي و هسته‌ا‌ي ، بهبود طرّاحي در سيستمهاي مورد استفاده در كنترل و مديريت عدم تكثير سلاحهاي هسته‌ا‌ي ، تلفيق ابزارهاي نانو و ميكرومكانيكي جهت كنترل سيستمهاي دفاع هسته‌ا‌ي . در بسياري موارد، فرصتهاي اقتصادي و نظامي مكمّل هم هستند. كاربردهاي درازمدت نانوتكنولوژي در زمينه‌هاي ديگر، پشتيباني كننده امنيت ملّي است و بالعكس.


6- کاربرد نانوتکنولوژي در صنعت الکترونيک

ذخيره‌سازي اطلاعات در مقياس فوق‌ العاده کوچک، با استفاده از اين فناوري مي‌توان ظرفيت ذخيره سازي اطلاعات را در حد 1000 برابر يا بيشتر افزايش دهد و نهايتاً به ساخت ابزارهاي ابرمحاسباتي به کوچکي يک ساعت مچي منتهي شود.
ظرفيت نهايي ذخيره اطلاعات به حدود يک ترابيت در هر اينچ ربع برسد، و اين امر موجب مي‌شود که ذخيره‌ سازي 50 عدد DVD يا بيشتر در يک هارد ديسک با ابعاد يک کارت اعتباري شود.
ساخت تراشه‌ها در اندازه هاي فوق العاده کوچک به عنوان مثال در اندازه هاي 32 تا 90 نانو متر، توليد ديسک‌هاي نوري 100 گيگا بايتي در اندازه هاي کوچک نيز مي باشد.

+ نوشته شده در  سه شنبه هجدهم بهمن 1390ساعت 15:51  توسط محمدرضا خسروی(MR)  | 

عوامل موثر بر حلالیت

 

حلالیت مواد تحت تاثیر عوامل زیر قرار میگیرد

۱)اثر PH:

حلالیت بسیاری از رسوبها و مواد نامحلول تحت تاثیر غلظت یون هیدرونیوم

[+H3O] قراردارد .

حلالیت رسوبهایی تحت تاثیر PHقرار می گیرد که یا آنیون آنها خواص بازی

 داشته باشد ویا کاتیون آنها خواص اسیدی از خود نشان دهد ویا آنکه هم

 آنیون وهم کاتیون ویژگی های اسیدی وبازی از خود نشان دهند

مثلا حلالیت کلسیم فلوئورید به شدت تحت تاثیر  PH است .

محلول سیر شده ای از کلسیم فلوئورید را در نظر بگیرید

 

 

دز صورتی که به این محلول چند قطره اسید بچکانیم یون +H حاصل از تفکیک

 اسید با یون- F که به شدت خواص بازی دارد تشکیل HF میدهد بنابراین به

 تعادل فوق کاهش غلظت یون- F تحمیل میشود از این رو تعادل طبق اصل

 لوشاتلیه برای جبران کاهش غلظت یون- F به طرف راست هدایت می گردد

 پس حلالیت  CaF2 با افزایش قدرت اسیدی و کاهش PH افزایش می یابد

البته کاهش PH همیشه سبب افزایش حلالیت نمی شود ودر صورتی که

یون -OHیکی از یون های محلول اشباع شده را از محیط خارج کند افزایش

PHسبب افزایش حلالیت میگردد

۲)اثر یون مشترک :

حلالیت یک رسوب در محلولی که دارای یون مشترک باسیستم تعادلی است

 به شدت کاهش می یابد

به طور مثال اگر به محلول سیر شده نمک طعام چند قطره محلول سدیم

سولفات بیفزائیم محلول کدر می شود که نشانگر تشکیل رسوب NaClاست

 یعنی حلالیت نمک طعام در حضور یون سدیم سولفات کاهش یافته است .

علت رامی توان چنین توجیه کرد که یون مشترک +Na  تعادل زیر را دچار

 آشفتگی کرده و طبق اصل لوشاتلیه آن را به طرف چپ و تشکیل NaCl 

هدایت می کنند

 

 

۳)اثر یون غیر مشترک :

حلالیت یک رسوب در محیطی که حاوی یونهای غیر مشترک با سیستم

تعادلی باشد با شرط اینکه یکی از یونها با یونهای سیستم تعادلی ایجاد

رسوب یا گاز کند به شدت افزایش می یابد

به طور مثال محلول سیر شده ای از نقره نیترات را در نظر بگیرید بطور یکه

 مقدار ی از نقره نیترات حل نشده در ته ظرف رسوب کرده باشد .

                         

 

در صورتی که به این محلول چند قطره محلول NaI  اضافه کنیم اگرچه

رسوب زرد رنگ AgI تشکیل می شود ولی بخشی از نقره نیترات حل

نشده محلول می گردد یعنی حلالیت AgNO3 در حضور NaI افزایش می یابد

 زیرا یون- I حاصل از تفکیک NaI با یون+ Ag سیستم تعادلی به شکل

 رسوب AgI در می آید بنابراین غلظت یون+ Ag کاهش می یابد پس تعادل

 فوق برای جبران این کاهش غلظت به طرف راست حرکت می کند به طوریکه

حلالیت افزایش می یابد

 

4) اثر واکنش های جانبی تشکیل کمپلکس :

در بعضی موارد حلالیت یک رسوب در حضور برخی گونه هائی که با آنیون

 یا کاتیون رسوب تشکیل کمپلکی می دهند به نحو بارزی تغییر می کند .

 به عنوان مثال با آنکه آلومنیوم هیدروکسید حلالیت بسیار کمی دارد ولی

 رسوب گیری آلومنیوم کلرید با باز در حضور یون فلوئورید کامل نمی شود چون

 کمپلکس های آلومنیوم فلوئورید آنقدر پایدارند که مانع راسب شدن کامل

 کاتیون از محلول می شوند . به عبارت واضح تر سیستم تعادلی زیر در 

حضور یون - Fدچارکاهش غلظت +Al3  می شود

 

 

 چون +Al3   با یون- F تشکیل کمپلکس -AlF63  می دهد بنابراین تعادل

مطابق اصل لوشاتلیه به طرف راست جابجا می شود تاکاهش غلظت +Al3

 را جبران کند در این شرایط حلالیت افزایش می یابد .

 حتی اگر یون مشترک منجر به تشکیل رسوب گردد حلالیت زیاد میشود در

 این نوع موارد در غلظت کم یون مشترک حلالیت کاهش ودر غلظت بالای آن

 حلالیت افزایش می یابد . مثلا حلالیت نقره کلرید در حضور غلظت پائین KCl

کاهش می یابد چون یون مشترک  -Cl  تعادل انحلال را به طرف تشکیل AgCl

 می راند ولی در غلظت های بالای KCl  تشکیل کمپلکسهای  -AgCl2  و

 -AgCl32   سبب کاهش غلظت +Ag و افزایش حلالیت  AgCl می شود

 

۵)اثر نوع حلال :

حلالیت رسوب ها در محلول های رقیق الکترولیتی افزایش می یابد به شرطی

که محلول الکترولیت فاقد یون مشترک با رسوب باشد . دلیل این امر این است

که یون های الکترولیت یا همان حلال ، یونهای با بار مخالف حاصل از حلالیت

رسوب را احاطه می کنند وبا خنثی تر کردن بار آنها جاذبه یونهای حاصل از

رسوب را کاهش داده وسبب افزایش حلالیت رسوب می شوند .این اثر که

به اثر الکترولیت مشهور است به بار گونه ها وابسته است مثلا حلالیت

 باریم سولفات در محلول 02/0 مولار پتاسیم نیترات دو برابر میشود در حالی که

 تحت همین شرایط حلالیت باریم یدات 25/1 برابر می گردد

مطالعات تجربی حاکی از آن است که اثر الکترولیت مستقل از ماهیت الکترولیت

 بوده و به خاصیتی از محلول بنام قدرت یونی وابسته است که به صورت زیر تعریف

 می شود

 

غلظت گونه = c

بار گونه = Z

 

مثلا برای محلول 1/0 مولار پتاسیم سولفات فدرت یونی برابراست با :

 

براساس شواهد تجربی در محلولهای رقیق اثر الکترولیت مستقل از ماهیت

یونها بوده وتابع قدرت یونی است پس حلالیت یک رسوب ودر جه تفکیک یک

 اسید ضعیف در حضور NaCl   و  KNO3  و BaI2   در قدرت یونی ثابت محلول

 هریک از این الکترولیت ها با هم برابر است وبدیهی است در غلظت های بالا

این استقلال از ماهیت الکترولیت از بین می رود

حلالیت ترکیبات معدنی در حلال های آلی مانند اتانول و دی متیل اتر و... کاهش

 می یابد زیرا این نوع ترکیبات ناقطبی بوده و توانائی احاطه یونها را ندارند

 

۶)اثر دما :

اکثر جامدات هنگام حل شدن گرما جذب می کنند لذا در اغلب موارد  حلالیت

 رسوبها با افزایش دما زیاد می شود و به همین ترتیب ثابت حاصل ضرب انحلال

 اکثر ترکیبات کم محلول نیز در دماهای بالا افزایش می یابد

 

+ نوشته شده در  سه شنبه هجدهم بهمن 1390ساعت 15:37  توسط محمدرضا خسروی(MR)  | 

انواع راکتور های شیمیایی

تقسیم بندی راکتورها
راکتورها براساس نوع واکنش انتخاب می شوند. بر اساس یک تقسیم بندی راکتورها به دو دسته به صورت زیر تقسیم می گردند:
1- مداوم مخزنی (Continuous) شکل مجهز به همزن و لوله ای شکل
2-غیر مداوم ((non-continuous
بر اساس نوع دیگر تقسیم بندی راکتورها را به دو دسته زیر تقسیم می کنند:
1-واحدی (Stagewise)
2-دیفرانسیلی(Differential)
راکتورهای واحدی(Stagewise)
در این نوع راکتورها شرایط ذر تمام حجم سیستم به صورت یکنواخت باقی می ماند. اگرازهرنقطه راکتور نمونه برداری کنیم، از نظر ترکیب نسبی و دما یکسان است و هیچ تفاوتی ندارد و موازنه جرم و انرژی رادر تمام راکتور برقرار می نماییم.

راکتورهای دیفرانسیلی (Differential)
شرایط درهرنقطه از راکتور یکسان نبوده و به صورت دیفرانسیلی تغییر می کند. ممکن است با زمان تغییر ننماید، ولی از هر نقطه به نقطه دیگر متفاوت است. برای برقراری موازنه جرم و انرزی باید یک جزء دیفرانسیلی در نظر گرفت.تفاوت راکتورهای واحدی و دیفرانسیلی
این است که در راکتورهای دیفرانسیلی بین غلظت ورودی و خروجی، تمام مقادیر را داریم ولی در راکتورهای واحدی نمی توانیم غلظت را به طور پیوسته داشته باشیم و غلظت به طور پله ای تغییر می کند.

راکتور ناپیوسته (Batch)
در یک راکتور ناپیوسته ورود و خروج جرم وجود ندارد. به عبارت دیگر ترکیب شوندگان را که ابتدا وارد ظرف کرده اند به شدت مخلوط می کنند تا واکنش به مدت معینی انجام گیرد. از دیدگاه تاریخی راکتورهای ناپیوسته از آغاز صنعت شیمیایی مورد استفاده بوده است و هنوز هم به صورت وسیعی در تولید مواد شیمیایی با ارزش افزودنی بالا نظیر دارو سازی مورد استفاده می باشد. راکتورهای نا پیوسته در موارد ذیل استفاده میگردد:


1-تولید در مقیاس های کوچک صنغتی
2-برای محصولاتی که تولید صنعتی آنها در شرایط مداوم مشکل است
3-تولید صنعتی محصولات گران قیمت
4-آزمایش کردن فرایند های نا شناخته


امتیاز راکتورهای ناپیوسته (Batch) در این است که با دادن زمان لازم برای انجام واکنش مواد اولیه با درصد تبدیل بالا به محصولات موردنظر تبدیل می گردند. در حالی که استفاده از این نوع راکتورها محدود به واکنش های متجانس فاز مایع می باشد. از دیگر محدودیت های این نوع راکتورها بالا بودن هزینه تولید در واحد حجم محصول تولید شده می باشد. همچنین تولید صنعتی در مقیاس بالا در این گونه راکتورها مشکل است. لازم به ذکر است که در یک راکتور نا پیوسته کامل (ایده آل) اختلاف درجه حرارت یا غلظت درون حجم سیستم وجود ندارد . هر چند به علت انجام واکنش غلظت اجزاء با زمان تغییر خواهد کرد ولی در هر لحظه در تمام نقاط سیستم غلظت یکسان خواهد بود و در نتیجه سرعت واکنش نیز در تمام نقاط یکسان و برابر سرعت متوسط سیستم می باشد.

راکتورهای نیمه پیوسته
در این گونه راکتورها قسمتی از مخزن راکتور با یک یا چند ماده واکنش دهنده تا اندازه ای پر شده و مواد اضافه شونده به صورت پیوسته وارد راکتور می شوند و حجم و ترکیب مخلوط واکنش دهنده با زمان تغییر می کند وهنگامی که میزان تبدیل مطلوب حاصل گردد راکتور برای انجام فرایند بعدی تخلیه می گردد.

راکتور مخلوط شونده(CSTR)
راکتور مخلوط شونده در شرایطی که یک واکنش شیمیایی احتیاج به همزدن شدید داشته باشد مورد استفاده قرار می گیرد.
راکتورهای مخلوط شونده یا به تنهایی و یا به صورت پشت سرهم متصل می گردند.
کنترل حرارتی در این نوع راکتورها به آسانی انجام می گیرد. یکی از محدودیتهای این نوع راکتورها درصد تبدیل پایین در مقایسه با سایر راکتورها می باشد. به همین دلیل حجم راکتور مذکور باید بزرگ انتخاب شود، تا به درصد تبدیل بالا دست یافت. راکتورهای Mixed یا CSTR
برای اغلب واکنش های متجانس در فاز مایع استفاذه می شود.
در راکتورهای اختلاط کامل به علت وجود داشتن همزن خوراک ورودی به سرعت در سرتاسر ظرف پراکنده شده و غلظت در هر نقطه درون ظرف تقریبا یکسان است . لذا سرعت واکنش در تمام نقاط درون سیستم تقریبا یکسان می گردد. بطور کلی در راکتورهای اختلاط کامل (ایده آل) تغییرات مکانی غلظت (یا خواص فیزیکی) درون راکتور و یا در خروجی آن وجود ندارد و خواص درون سیستم یکنواخت می باشد.

راکتورهای لوله ای(Plug)
در صنایع شیمیایی برای فرایند های با مقیاس بزرگ معمولآ از راکتورهای لوله ای استفاده می شود. زیرا نگهداری سیستم راکتورهای لوله ای آسان می باشد (چون دارای قسمتهای متحرک نیستند) ومعمولا بالاترین درصد تبدیل مواد اولیه در واحد حجم راکتور را در مقایسه با سایر راکتورهای سیستم جاری دارا هستند. از محدودیت این نوع راکتورها مشکل حرارتی برای واکنشهای گرمازاست که بسیار سریع عمل میکنند و نهایتآ منجر به تشکیل نقاط داغ (Hot Spot) می گردند. اغلب واکنشهای متجانس گازی در این نوع راکتورها انجام می گیرند.
در جریان Plug سرعت کلیه ذرات یکسان است. هیچ ذرهای از ذره دیگر سبقت نمی گیرد و عقب هم نمی ماند. هیچگونه تداخلی هم در جریانها نداریم ولی در بیشتر موارد الگوی جریان متفاوت است. دلیل این است که همواره در جهت حرکت سیال یک جریان برگشتی (معکوس) داریم. حرکت معکوس سیال را Back Mixing (پس آمیزی یا اختلاط متقابل) می گویند. درون
راکتورهای Plug غلظت از نقطه ای به نقطه ذیگر تغییر می کند. چنین سیستمهایی توزیع شده (Distributed) نامیده می شوند و تجزیه تحلیل معادله عملکرد آنها در شرایط پایدار مستلزم حل معادلات است.

راکتورهای دوره ای (Recycle Reactor)
در این نوع راکتور مخلوط واکنش خروجی از راکتور بدون عبور از مراحل جدا سازی و بازیافت به ورودی راکتور برگشت داده می شود. این نوع برگشت در راکتور Mixed وجود دارد واز این نظر امری عادی می باشد. یعنی استفاده از جریان برگشتی برای یک راکتور Mixed اثری روی بازدهی ندارد. باید توجه داشت که استفاده از جریان برگشتی برای یک راکتور با جریان Plug معمولآ بازدهی را کاهش می دهد و آن را به سمت بازدهی یک راکتور Mixed سوق می دهد.
لذا معمولآ در شرایط زیر از راکتورهای دوره ای استفاده می کنیم:
1-برای واکنشهای اتوکاتالیزوری و واکنشهایی که احتیاج به همزن خاصی دارند. مثلآ اگر واکنشی احتیاج به درصد معینی از همزن (کمتر از الگوی اختلاط راکتور مخلوط شونده و بیشتر از الگوی اختلاط در راکتور لوله ای) داشته باشد از راکتور دوره ای استفاده می کنیم.
2-برای واکنشهایی که باید در شرایط هم دما انجام بگیرند.
3-برای واکنشهایی که متشکل از چند واکنش سری یا موازی رقابتی هستند، برای رسیدن به تولید بهینه (ماکزیمم) از محصول مورد نظر (Selectivity)، از راکتورهای دوره ای استفاده می کنیم.

+ نوشته شده در  سه شنبه هجدهم بهمن 1390ساعت 15:28  توسط محمدرضا خسروی(MR)  | 

کاویتاسیون چیست؟

پيش فرض 

جریانی از مایع را در نظر بگیرید هرگاه فشار درون لوله به فشار بخار مایع نزدیک شود یا برسد مایع موجود در لوله شروع به جوشیدن می کند. و حباب های بخار در آن تشکیل می شود. این حباب های کوچک به همراه مایع به نقاطی که فشار در انجا با لاتر است منتقل می شود و می ترکند و باعث ایجاد اسیب به بدنه های لوله و پره های توربین می شود.
این پدیده را کاویتاسیون (خلازایی) می نامند.

کاویتاسیون در پمپ ها باعث ایجاد سرو صدا و پایین آمدن راندمان آن می شوند
+ نوشته شده در  شنبه پانزدهم بهمن 1390ساعت 22:25  توسط محمدرضا خسروی(MR)  | 

انواع پمپ

پمپ گریز از مرکز
هرگاه جسمی به‌سرعت حول محور خود به چرخش در آید، ذرات مرکزی آن جسم در اثر نیروی تولید شده به خارج پرتاب می‌گردند. این نیرو را نیروی گریز از مرکز گویند. پمپهای گریز از مرکز بر اساس این نیرو که در اثر چرخش پروانه بوجود می‌آید، کار می‌کنند. دو قسمت مهم این تلمبه که کار اصلی را انجام می‌دهند، عبارتند از:
پروانه impeller
جداره Casing
مایع پس از رهایی از پروانه ، از مجرایی می‌گذرد که انرژی سرعتی مایع به انرژی فشاری مبدل می‌گردد. به این ترتیب ، فشار مایع هنگام خروج بیش از فشار ورودی آن می‌باشد. اگر سطل پر آبی را با سرعت به دوران در آوریم، مشاهده می‌شود وضعی قرار می‌گیرد که بای آب نمی‌ریزد. اگر در همین حال ، سوراخی در ته طرف ایجاد کنیم، مشاهده می‌شود که آب با سرعت زیاد از سوراخ به بیرون می‌ریزد..
پمپ دوّار
پمپ دوّار ، یک نوع پمپ جابجایی مثبت است که مایع را ممکن است به دو طریق پمپ کند: دورانی خاص و مخلوطی از دوران و نوسان. هر پمپ دوّار به‌طور کلی از یک محفظه ساکن درست شده که در این محفظه یک موتور بوسیله نیروی یک محرک خارجی می‌گردد. حرکت روتور اجرا ، پمپ کننده را به حرکت در می‌آورد. پمپهای دوّار با طرحهای گوناگون و متنوع ساخته شده‌اند که معمولترین آنها عبارتند از:
چرخ دنده داخلی و خارجی ، یک پیچی و چند پیچی ، تیکه‌ای ، پره‌ای نفرشی ، پره‌ای نوسانی ، بادامک پیستونی می‌باشد. این پمپها لازم است با سرعت دورانی زیاد و در حدود 5000 دور در دقیقه و یا بیشتر کار نمایند.

 پمپ های جابجایی مثبت

پمپ دورانی یک نوع پمپ جابه‌جایی مثبت می باشد. به عنوان مثال در هر دور کامل چرخ در یک پمپ چرخ دنده‌ای مقدار معینی از سیال را از ورودی به خروجی منتقل کرده و آن را به سیستم های لوله کشی انتقال می دهد. به همین دلیل از پمپهای چرخ دنده‌ای معمولا برای انتقال سیالها از میان سیستمهایی که دارای یک مسیر جریان کامل از قسمت خروجی به ورودی پمپ می‌باشند، استفاده می‌شود. اگر این مسیر جریان برای مدتی مسدود شود، فشار زیاد ایجاد شده باعث متوقف شدن واحد محرک می‌گردد. پمپ ممکن است خورد شود، یا حداقل اتصالات فلزی سیستم لوله کشی خراب شده و شروع به نشت نمایند.

پمپ چرخ دنده جناقی

این پمپ به خاطر داشتن شکل دندانه چرخ دنده‌اش ، پمپ چرخ دنده جناقی نامیده شده است. دندانه‌های پمپ چرخ دنده‌ای ساده ، مستقیم هستند. بدین دلیل هنگام تخلیه هر چرخ دنده در یک زمان انجام می‌شود. دنده چرخ دنده‌های جناقی کج است. این موضوع باعث روی هم افتادن چرخ دنده‌ها می‌شود. هنگام تخلیه یک چرخ دنده قبل از تکمیل هنگام چرخ دنده دیگر انجام می‌شود، بدین دلیل باعث نرم تر کار کردن جریان در داخل سیستم لوله کشی می‌شود.

پمپ های چرخ دنده حلزونی

بعضی از پمپهای چرخ دنده‌ای باید بتوانند سیال را به هر دو جهت جابه‌جا کنند. بدین معنی که جهت چرخش چرخ دنده‌ها بایستی معکوس شود. چرخش پمپهای چرخ دنده‌ای ساده قابل برگشت (دو طرفه) است، ولی دارای خروجی ضربانی می‌باشند. پمپهای چرخ دنده جناقی دارای خروجی یکنواخت‌تری هستند، ولی جهت چرخش چرخ دنده‌ها قابل برگشت نیست. برای پیشگیری این نقض ، بعضی از پمپهای چرخ دنده‌ای از چرخ دنده حلزونی استفاده می‌کنند. کجی دندانه‌های چرخ دنده حلزونی باعث می شود هنگامه تخلیه یکنواخت برای جریان خروجی آرام تر از پمپ می‌باشد.

هر پمپ دارای سه روتور می‌باشد، یک روتور نیرو دهنده و دو هرز گرد. روتورها درون یک پوسته قرار می گیرند. سیال از طریق دهانه مکشی وارد پمپ می‌شود و از طریق گذرگاههای محفظه به هر دو انتهای روتورها یا جایی که سیال در میان فضای بین پوسته روتور و دندانه‌های روتور نیرو دهنده بار (سیال) پمپاژ شده مورد نیاز را با هرزگردها که بطور ساده برای آب بندی بکار می‌روند، حمل می‌کند. محفظه‌های روتور از یاطاقانهای طوقهای تشکیل شده‌اند. این یاطاقانها روتورها را نگهداری و هدایت کرده و آنها را درگیر می‌کنند.
محفظه روتورها کانالهایی هستند که مایع باید قبل از تخلیه شدن از پمپ از میان آنها بگذرد. برای جلوگیری از نفوذ هوا به داخل پمپ (فشار سیال در طرف مکش پمپ ممکن است کمتر از فشار اتمسفر باشد) شافت روتور نیرو دهنده باید آب بندی شود. شافت روتور هرزگرد مانند میله والو به وسیله پکینگی که توسط گلند در کاسه نمد نگه داشته می‌شود، آب بندی می‌گردد. قسمت انتهای کاسه نمد یک قسمت مجزا می‌باشد. این قطعه یاطاقان طوقه‌ای می‌باشد که بوش آب بندی نامیده می‌شود. بوش آب بندی ، شافت روتور نیرو دهنده را نگه داشته و هدایت می‌کند و نیز برای نفوذ ناپذیری هوا از اطراف شافت به داخل کمک می‌کند.

 

زمانی که یک مهندس شیمی (بعضی از شاخه ها) وارد صنعت می شود باید بتواند با انواع پمپ ها و دستگاه هایی که با سیال ها سروکار داردند کارکند و اطلاعاتی درمورد آنها داشته باشد. به همین دلیل سعی کردم در این پست به توضیحی در مورد یکی از پمپ های بسیار معروف و پر کاربرد در صنعت بپردازم.


پمپ سانتریفوز
در این این نوع پمپ ها سیال ابتدا به مرکز پمپ و نزدیک پره‌ها فرستاده می شود. و از اثر نیروی گریز از مرکز که ناشی از گردش سریع پمپ می‌باشد و انرژی جنشی زیادی بدست آورده و به خارج پرتاب شده و پوسته را از سیال پر کرده. انرژی جنبشی در قسمت های خروجی پمپ به انرژی فشاری تبدیل شده.

حرکت پروانه:

در جهت عمود بر فرو رفتگی پره ها در پمپ ها می باشد. پمپ های سانتریفیوژ از پرکاربردترین پمپ هائی است که در صنعت کاربرد فراوان دارد. مزیت این نوع پمپ ها این است که در اثر گذر حجمی سیال در آنها یکنواخت می‌شود.

پمپ های سانتریفیوژ را بر حسب نوع آن ها به انواع زیر تقسیم بندی می‌کنند:
از نظر وضعیت طبقات که ممکن است یک طبقه و یا چند طبقه باشند.
از نظر مقدار آبدهی و هد که ممکن است بصورت کم ، متوسط و زیاد باشند.
از نظر نوع پروانه ، تعداد تیغه.

اجزای یک پمپ سانتریفوژ
موتور ، که باعث حرکت دورانی محور می گردد.
پوسته جداره
لوله رانش
لوله مکش
محفظه بین پوسته و پروانه

پروانه پمپ شامل پره‌هایی می‌باشد که به نحوی ساخته شده‌اند تا جریان داخل پمپ حتی امکان یکنواخت باشد.
انواع پروانه‌های پمپهای سانتریفوژ


انواع پروانه‌های معمولی
پروانه ممکن است به یک صفحه متصل باشد یا بین دو صفحه قرار داشته باشد یا آزاد باشد. مایع در جهت محور وارد بدنه پمپ می‌شود و سیال ورودی بوسیله پره‌های پروانه دریافت شده و به داخل یک پیچک که مماس بر پمپ می‌باشد تخلیه می‌گردد. آب بندی پمپ های سانتریفوژ مسئله ای بسیار مهمی است که در صورت عدم رعایت آن باعث کاهش راندمان عمل پمپ می‌گردد
+ نوشته شده در  شنبه پانزدهم بهمن 1390ساعت 22:24  توسط محمدرضا خسروی(MR)  | 

عيب يابي در پمپ ها

در شرایط ایده ال پمپ هایی را مورد استفاده قرار می دهیم که همیشه در بهترین وضعیت خود کار می کنند.اما در دنیای واقعی به ندرت پیش می آید بتوانیم از یک تولید کننده پمپی دریافت نماییم که بازدهی آن به الزامات مورد نظر ما نزدیک باشد.و یا پیدا کردن راهی که بتواند عملکرد پمپ را درنقطه بیشترین بازدهی و یا نزدیک به ان نقطه حفظ نماید محال به نظر می رسد.البته مهندسین کاربردی راههایی برای بهینه سازی انتخاب پمپها دارند.یک راه این است که پمپ مطلوب را مشخص نموده و مشخصه های آن را به قدری دقیق ذکر نماییم که پمپهای دیگر را شامل نشود.در صنعتی که رقابت بر سر بهترین پیشنهادات وجود دارد این کار مورد قبول واقع نمی شود.روش دیگر بیان نمودن مشخصات پمپ بصورت پارامترهای اساسی می باشد.این پارامترها عبارتند از: جریان هد (افت فشار)،حداکثر توان ترمز، حداقل بازدهی پمپاژ،حداقل ضریب توان موتور و حداکثر سرعت موتور.
عملكرد پمپهاي سانتريفوژ در حالتی که شدت کار بر روی آنها زیاد باشد مي تواند موجب اختلالاتی در تلمبه شود. جريان توربولنت مي تواند موجب ایجاد لرزش هايی باعث و خارج شدن پمپ از مدار شود که به آن اصطلاحا می گوینداوت شده. يكي از دلايل اوليه لرزشهاي پمپ كاويتاسيون می باشد. در اين حالت در اثر كاهش فشار مايع و تبخير صورت گرفته در سمت مكش پروانه توده هاي حباب توليد و به خروجي پروانه برخورد کرده. حبابها همراه با صدا (مشابه صداي ضربه به بادكنك) و ايجاد لرزش مي شود.
توليد حباب در پروانه وقتي رخ مي دهد كه Npsh موجود مكش پمپ كمتر از Npsh اين امر مي تواند به علت وجود مانع در مسير مكش، وجود زانوئي در فاصله نزديك ورودي پمپ و يا شرايط غير عادي مي باشد. عواملي مانند افزايش دما و يا كاهش فشار در سمت مكش نيز مي تواند شرايط فوق را ايجاد كند. البته انتخاب پمپ براي سيستمهايي كه در دبي هاي متفاوت و سرعت متغير كار مي كنند بايستي با دقت صورت گيرد تا از پديده كاويتاسيون جلوگيري گردد. با توجه به ملاحظه مراجع مختلف لرزش پمپ ها معلوم شده است يك عامل رايج اين لرزشها پديده كاويتاسيون است و مي تواند مخرب نيز باشد.

ازدیگر عواملی که می تواند باعث لرزش در پمپ ها شود می توان به هم محور نبودن تلمبه و محور اصلی آن بیان کرد زیرا در این صورت باعث ایجاد جفت نبودن با دیگر قطعات دانست به همین دلیل باعث ایجاد سرو صدا می شود.

از دیگر عوامل می توان به خارج شدن شفت از مرکز خود دانست که این پدیده با چشم قابل دیدن و تشخیص نیست به همین دلیل آن را بر روی ماشین تراش که دارای اندازه گیر ساعتی می باشد نصب می کنند و اگر این کج شدگی به اندازه خیلی خیلی ناچیرز باشد به وسیله یک شخص ماهر قابل بازگشت به خط می باشد در غیر اینصورت از رده خارج می شود.

یکی دیگر از اشکالات در پمپ ها می توان به خوردگی پروانه تلمبه و رینگ ها و بلبرنگ ها اشاره کرد که سائیده شدن و یا فاصله آزاد آنها زیاد شده است.
+ نوشته شده در  شنبه پانزدهم بهمن 1390ساعت 22:21  توسط محمدرضا خسروی(MR)  | 

پمپ ها و انواع آن

می دانیم که مایعات دارای شکل ثابتی نیستند به همین دلیل برای جابجایی آن ها از روش اختلاف فشار استفاده می شود تا بتوان آن ها را انتقال داد.
که برای این کار از پمپ ها یا تلمبه استفاده می شود.

عملیاتی که برای ایجاد اختلاف فشار و جابجایی مایعات مورد استفاده می شود را پمپاژ کویند.

انواع پمپ ها

پمپ گریز از مرکز:

اینگونه پمپ ها داری یک شیر خروجی می باشد که باید بسته باشد زیرا در این موقه باعث ایجاد حداکثر فشار در تلمبه می شود که به آن فشار طراحی گفته می شود.
پمپ ترکیبی:

زمانی که نیاز باشد یک سیال را با جریان بسیار بالا ارسال کنیم چندین پمپ را بصورت سری به همدیگر متصل کرده که به اینگونه پمپ ها پمپ ترکیبی گویند.

پمپ دیاگرامی:

از اینگونه پمپ ها زمانی استفاده می شود که نیاز به ایجاد فشار و سرعت زیاد نباشد و این پمپ ها با استفاده از یک خلاء می توانند سیال را پمپ کنند.

پمپ رفت و برگشتی:

در این پمپ ها برای بالا بردن فشار سیال از حرکت افقی و عمودی استفاده می شود. که مقداری اتلاف انرژی به همراه دارد.
این پمپ ها برخلاف پمپ های گریز از مرکز نباید خروجی پمپ بسته باشد زیرا باعث ایجاد خرابی در پمپ می شود. علاوه بر این ها بستن یک شیر اطمینان در خروجی پمپ لازم است.

پمپ پیستونی:

در این نوع پمپ ها که مانند پمپ های گریز از مرکز دارای یک شیر خروجی است که نباید موقع عمل پمپاژ بسته باشد.

پمپ پلانجری:

این نوع پمپ دارای یک شیر اطمینان است که مانند پمپ پیستونی است ولی اگر قطر فشارنده آن کم باشد به آن پمپ پلانجری گویند
+ نوشته شده در  شنبه پانزدهم بهمن 1390ساعت 22:19  توسط محمدرضا خسروی(MR)  | 

پالایش نفت

دید کلی

نفت خام حاصل از چاه دارای مواد نا خواسته از قبیل آب و جامداتی مانند شن ، قیر و گازهای متان و اتان می‌باشد. برای جداسازی اینگونه عوامل ، آنرا وارد مخازنی می‌کنند تا جامدات موجود در آن ته‌نشین شده و گازهای آن خارج شود. سپس وارد جداساز سانتریفوژی شده که نقش آن جدا کردن تتمه آب ، گاز و جامدات معلق در آن می‌باشد. برای حذف نمکهای معدنی ، نفت را با آب ولرم می‌شویند. آنگاه قسمتی از نفت توسط لوله به پالایشگاه فرستاده شده و قسمتی جهت صدور به بنادر تلمبه می‌شود.

تصویر

تقطیر

برای تفکیک برش‌های متشکله نفت خام ، عملیات فیزیکی و شیمیایی چندی بر روی آن بعمل می‌آورند تا فرآورده‌های مورد نیاز جامعه امروزی را تولید نمایند. از مهمترین آنها تقطیر جزء به جزء نفت است که در برج تقطیر صورت می‌گیرد. تقطیر جزء به جزء عبارت است از یک سری تبخیر و تبرید که در سینی‌های یک برج استوانه‌ای صورت می‌گیرد. مایعات خالص در فشار محیط ، در دمایی به جوش می‌آیند که در آن دما ، فشار بخار آن برابر فشار محیط گردد. مایعات مخلوط در حدود دمایی که حاصل جمع فشار‌های جزئی عوامل تشکیل دهنده آنها برابر فشار محیط گردد به جوش می‌آید.

در نقطه جوش ، فازهای بخار و مایع در حال تعادل می‌باشند. چنانچه فشار ، کاهش یابد، تبخیر صورت می‌گیرد و در حالت معکوس ، تبرید اتفاق می‌افتد. از فشار بخار برای محاسبه ترکیب گازهای مخلوط در حالت تعادل استفاده می‌شود. وقتی که اجزا تشکیل دهنده یک محلول در برج تقطیر بطور دائم جدا می‌شوند بخارهایی که به سمت بالا حرکت می‌کنند، با ترکیبات فرارتر مایع برگشت کننده که به سمت پایین سرازیر است برخورد کرده و غلیظ‌تر می‌شوند.

انواع تقطیر

  • تقطیر در فشار محیط: در این روش ، فرآیند تقطیر در فشار محیط صورت می‌گیرد.

  • تقطیر با بخار آب: وقتی که تقطیر در مجاورت بخار ماده مخلوط نشدنی صورت می‌گیرد، فشار بخار یکی تحت تاثیر دیگری قرار نگرفته و مخلوط در دمایی که مجموع فشارهای جزئی آنها برابر فشار محیط گردد تقطیر می‌شود.

  • تقطیر در خلا: در این روش ، فرآیند تقطیر در خلاء (در فشار 40 میلی‌متر جیوه) صورت می‌گیرد.

  • تقطیر در خلاء و بخار: این روش با انتقال گرما توسط بخار آب و با استفاده همزمان از پمپ خلاء جهت کاهش فشار کلی صورت می‌گیرد. بطور کلی این روش دارای اشکالاتی بوده و از آن زیاد استفاده نمی‌شود.

  • تقطیر در فشار: این روش برعکس تقطیر در خلاء بوده و باعث می‌شود که فرایند تقطیر ، در دمای بیشتری نسبت به آن در فشار محیط صورت گیرد و دمای بالاتر باعث گسسته شدن مولکولهای نفت گردیده و ترکیب آنها را تغییر می‌دهد.

  • روشهای جدید تقطیر: این روشها شامل یک یا دو مرحله تقطیر در فشار محیط بوده که توسط تقطیر با بخار همراه می‌شود.

مباحث مرتبط با عنوان

+ نوشته شده در  سه شنبه چهارم بهمن 1390ساعت 0:31  توسط محمدرضا خسروی(MR)  | 

فلز

دید کلی

امروزه ، بازتاب اثرات فلزات در زندگی انسان ، بقدری محسوس است که هر گاه از فلز نام می‌بریم ، ساختمانهای بدیع و آسمان خراشهای عظیم در برابر چشم مجسم می‌شود، همچنین هواپیماها و موشک‌های غول پیکری به خاطر می‌آید که در دل آسمان و کهکشانها راه می‌پویند و با پرواز خود فاصله و زمان مسافرت را کوتاهتر ساخته ، انسان را در رسیدن به کرات دیگر یاری می‌کنند. راستی اگر فلز نبود، زندگی و تمدن بشری به چنین مرحله‌ای می‌رسید؟

گروهی از عناصر هستند که خواص مشترک معینی دارند. این مواد ، گرما و الکتریسیته را به خوبی هدایت می‌کنند، و به همین دلیل ظروف آشپزی و سیمهای برق از فلز ساخته می شود. فلزها همچنین محکم‌اند و بآسانی می‌توان آنها را شکل داد؛ به همین دلیل است که از آنها برای ساختن سازه هایی از قبیل پلها استفاده می شود. اگر چه شباهتهای زیادی بین فلزها وجود دارد، تفاوتهایی نیز دارند که مشخص می‌کند یک فلز تا چه حد برای یک کاربرد خاص مناسب است.
از 109 عنصری که امروزه شناخته شده است، 87 عنصر فلز است. از فلزها بندرت به شکل خالص استفاده می‌شود؛ معمولا با مخلوط کردن یک فلز با فلزهای دیگر یا غیر فلزها آلیاژی از آن را تشکیل می‌دهند.

img/daneshnameh_up/5/5c/tirahanb.jpg

شکل واقعی فلزات

شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف ، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها ، یون‌ها کاملا پهلوی هم قرار دارند، و معمولا تراکم در فلزات زیادتر از دیگر مواد است.

اختلافات عمده فلزات و دیگر جامدات و مایعات

  • فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته می‌باشند. به این سبب فلزات از دیگر گروه‌های عناصر ، کاملا متفاوت دارد.

  • اختلاف عمده فلزات و دیگر جامدات و مایعات ، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها ، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند (رسانش گرمایی فلزات).

مقاومت فلز

مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده ، نشکند. بسیاری از فلزات ، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات ، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.

چرا فلزات ظاهر درخشنده یا براق دارند؟

دلیل اول آن است که با طرح ریزی و براق کردن صحیح می‌توان فلزات را به شکل خیلی صاف تهیه کرد. گر چه آنها نیز تصاویر را خوب منعکس می‌کنند، ولی ظاهر سفید و درخشان بیشتر قطعات فلزی صیقلی شده را ندارند. بطور کلی جلا و درخشندگی فلز بستگی دارد به گروه الکترون‌های آن دارد.

الکترون‌ها می‌توانند هر نوع انرژی را که به روی فلزات می‌افتد جذب کنند؛ زیرا در حرکت آزاد هستند. بیشتر انرژی الکترون‌ها از تابش نوری است که به آنها می‌افتد، خواه نور آفتاب باشد یا نور برق. اکثر فلزات همه انرژی جذب شده را پس می‌دهند، به همین دلیل ، نه تنها درخشان بلکه سفید به نظر می‌آیند.

چرا فلزات تغییر شکل می‌دهند؟

بسیاری از فلزات در حرارت ویژه‌ای ، آرایش یون‌های خود را تغییر می‌دهند. با تغییر ترتیب آرایش یون‌های بسیاری از خصوصیات دیگر فلز نیز دگرگون می‌شود و ممکن است فلز کم و بیش شکننده ، قردار ، بادوام و قابل انحنا شود یا اینکه انجام کار با آن آسانگردد. بسیاری از فلزات در هنگام سرد بودن ، به سختی تغییر شکل می‌پذیرند. بیشتر فلزات جامد را به زحمت می‌توان در اثر کوبیدن به صورت ورقه و مفتو‌ل‌های سیم در آورده ، ولی اگر فلز گرم شود، انجام هر دو آسان است.

مباحث مرتبط با عنوان

+ نوشته شده در  سه شنبه چهارم بهمن 1390ساعت 0:25  توسط محمدرضا خسروی(MR)  | 

کاتالیزور

ریشه لغوی

کاتالیزور از دو صفت کاتا و لیزور تشکیل شده است. در زبان یونانی "کاتا" به معنای پائین ، افتادن ، یا پائین افتادن است و "لیزور" به معنی قطعه قطعه کردن می‌باشد. در برخی زبانها کاتالیزور را به معنی گردهم آوردن اجسام دور از هم معرفی کرده اند.

تاریخچه

اولین گزارش استفاده از کاتالیزور ، مربوط به کریشف می‌باشد که با استفاده از یک اسید به عنوان کاتالیزور توانست نشاسته را به قند ، هیدرولیزکند. بعدها دیوی توانست واکنش اکسیداسیون هیدروژن را با اکسیژن در حضور کاتالیزورپلاتین انجام دهد که این واکنش یک واکنش گرما گیر است و در نتیجه هنگام انجام واکنش جرقه تولید می‌شد.

اولین کار در توضیح اینکه چرا یک واکنش کاتالیزوری انجام می‌گیرد و کاتالیزور چه نقشی دارد، توسط "فارادی" انجام شد. بیشترین بهره‌برداری از کاتالیزور در جنگ جهانی بود.

انقلاب تکنولوژی اصلی در زمینه کاتالیزور مربوط به نیمه دوم قرن 20 یعنی بین سالهای1980 ـ 1950 می‌باشد.دهه 1960 ـ 1950 دهه ای است که با تولید کاتالیزورهای زیگر _ ناتا ترکیبات بسیار مهم و استراتژیک ساخته شد.

انواع کاتالیزور

کاتالیزور به دو نوع کاتالیزور مرغوب و نامرغوب تقسیم می‌شود:

  • کاتالیزور مرغوب: کاتالیزور مرغوب به کاتالیزوری گفته می‌شود که فقط اجازه تشکیل یک نوع محصول را بدهد.
  • کاتالیزور نامرغوب: اگر در حضور کاتالیزور محصولات متفاوتی امکان تشکیل داشته باشند کاتالیزور نامرغوب تلقی می‌شود.

چگونگی عمل کاتالیزور

تجربه نشان داده است که واکنش با کاتالیزور در دمای کمتری صورت می‌گیرد و همچنین کاتالیزور ، انرژی اکتیواسیون را پائین می‌آورد یا کاهش می‌دهد یا باعث می‌شود مولکولهای درشت به مولکولهای کوچکتر ، قطعه‌قطعه یا شکسته شوند.

کاتالیزور واکنش را می‌توان بدون تغییر در پایان واکنش بدست آورد. مثلا سرعت تجزیه KClO3 را با مقدار کمی MNO2 می‌توان فوق‌العاده زیاد کرد. در معادله‌ای که برای این تغییر نوشته می‌شود ، کاتالیزور را بالای پیکان می‌گذارند ، زیرا کاربرد آن در استوکیومتری کل واکنش اثری ندارد:

KClO3--------->2KCl+3O2

 

مکانیسم واکنش کاتالیزوردار

کاتالیزور نمی‌تواند موجب وقوع واکنش‌هایی شود که از نظر ترمودینامیک امکان وقوع ندارند. بعلاوه صرفا حضور کاتالیزور نیست که (احتمالا بعنوان یک بخش فعال‌کننده) موجب اثر بر سرعت واکنش می‌شود. در یک واکنش کاتالیزوردار ، کاتالیزور در یک مرحله عملا مصرف می‌شود و در مرحله بعدی بار دیگر تولید می‌گردد و این عمل بارها تکرار می‌گردد، بدون آنکه کاتالیزور دچار تغییر دائمی شود.

بنابراین کار کاتالیزور آن است که راه تازه ای برای پیشرفت واکنش می‌گشاید. بدین ترتیب مکانیسم کاتالیزوردار با یک واکنش بی‌کاتالیزور تفاوت دارد. انرژی فعال سازی راهی که واکنش به کمک کاتالیزور طی می‌کند، کمتر از انرژی فعال‌سازی راهی است که همان واکنش بدون کاتالیزور می‌پیماید (شکل 1)


این واقعیتی است که علت سریعتر شدن واکنش را توجیه می‌کند. وقتی کاتالیزور بکار برده می‌شود، مولکولهای نسبتا بیشتری انرژی لازم برای یک برخورد موفق پیدا می‌کنند (شکل 2). بدین ترتیب عده کل برخوردهای موثر در واحد زمان، که موجب انجام واکنش می‌شوند، افزایش می‌یابد.

در شکل 1 به دو نکته دیگر نیز پی می‌بریم. نخست آنکه تغییرات انرژی برای واکنش کاتالیزوردار و واکنش بی‌کاتالیزور یکسان است. دیگر آنکه انرژی فعال سازی واکنش معکوس نیز به هنگام استفاده از کاتالیزور کاهش می‌یابد و مقدار کاهش آن درست برابر کم شدن انرژی فعال سازی واکنش کاتالیزوردار اصلی است. این بدان معنی است که کاتالیزور بر یک واکنشی و واکنش معکوس آن اثر یکسان دارد. اگر یک کاتالیزور سرعت یک واکنش را دو برابر کند، همان کاتالیزور سرعت واکنش معکوس آن را نیز دو برابر خواهد کرد.

کاتالیزورهای طبیعی (آنزیم)

بسیاری از فرایندهای صنعتی به اعمالی بستگی دارند که با کاتالیزور صورت می‌گیرند. ولی کاتالیزورهایی که برای انسان مورد اهمیت بیشتری دارند، کاتالیزورهای طبیعی یعنی آنزیم‌ها هستند. این مواد فوق العاده پیچیده ، فرایندهای حیاتی مانند گوارش و سنتز سلولی را کاتالیز می‌کنند.

عده زیادی از واکنشهای شیمیایی پیچیده که در بدن صورت می‌گیرد و برای حیات ما ضرورت دارد، به علت اثر آنزیم‌ها در دمای پائین بدن امکان وقوع پیدا می‌کنند. هزاران آنزیم وجود دارند که هر یک وظیفه خاصی را انجام می‌دهند. تحقیق درباره ساختمان و عمل آنزیم‌ها ، نویدهای فراوانی درباره پیشرفت شناخت عامل بیماری و مکانیسم رشد می‌دهد.

 

کاتالیزور همگن و ناهمگن

در کاتالیزور همگنماده ای که بعنوان کاتالیزور کار می‌کند، با مواد واکنش‌دهنده در یک فازند، ولی در یک کاتالیزور ناهمگن یا کاتالیزور سطحی ، مواد واکنش‌دهنده و کاتالیزور در دو فاز مجزا کنار هم هستند و واکنش در سطح کاتالیزور صورت می‌گیرد.

کاتالیزور همگن

نمونه ای از کاتالیزور همگن در فاز گازی ، اثر کلر در تجزیه دی‌نیترون اکسید است. گاز دی‌نیترون اکسید ، در دمای اتاق ، گاز نسبتا بی‌اثری است، اما در دماهای نزدیک به صد درجه طبق معادله زیر تجزیه می شود.

(2N2O(g)--------->2N2(g)+O2(g


مطالعات سینتیک نشان می‌دهد که واکنش مذکور بر اثر برخورد بین دو ملکول کلر کاتالیز می‌شود.

کاتالیزور همگن در محلول نیز ممکن است صورت گیرد. بسیاری از واکنشها بوسیله اسیدها و بازها کاتالیز می‌شوند. تجزیه هیدروژن پراکسید در حضور پون یدید کاتالیز می‌شود.

کاتالیزور ناهمگن

کاتالیزور ناهمگن عمدتا از طریق جذب سطحی شیمیایی مواد واکنش دهنده بر سطح کاتالیزور صورت می‌گیرد. جذب سطحی فرآیندی است که در جریان آن مولکولها به سطح جسمی جامد می‌چسبند. مثلا در ماسکهای گازی ، زغال به عنوان یک ماده جاذب برای گازهای زیان آور بکار می‌رود.

در جذب سطحی فیزیکی معمولی ، مولکولها ، بوسیله نیروهای و اندروالسی به سطح ماده جاذب ، گیر می‌کنند. بنابراین مولکولهایی از گاز که جذب سطحی شده‌اند، تا همان حد تحت تاثیر قرار گرفته‌اند که گویی مایع شده باشند.

در جذب سطحی شیمیایی ، مولکولهای جذب شده ، با پیوندهایی که قابل مقایسه با پیوندهای شیمیایی است، به سطح ماده کاتالیزور نگه داشته می‌شوند. در فرایند تشکیل پیوند با ماده جاذب ، مولکولهایی که بطور شیمیایی جذب شده‌اند، دچار تغییر آرایش الکترونی درونی می‌شوند. پیوندهای درون بعضی از مولکولهای کشیده و ضعیف و حتی پیوند بعضی از آنها شکسته می‌شوند.

مثلا هیدروژن بصورت اتمی بر سطح پلاتین جذب می‌شود. بنابراین تعدادی از ملکولها که بطور شیمیایی جذب سطحی شده‌اند، به صورت کمپلکس فعال‌ شده یک واکنشی که در سطح کاتالیزور شده، عمل می‌کند.

مکانیسم جذب سطحی شیمیایی:

تاکنون مکانیسم دقیق جذب سطحی شیمیایی و کاتالیز سطح کاملا فهمیده نشده است، فقط فرضهایی قابل قبول برای مکانیسم چند واکنش خاصی مطرح شده است:

  • نظری دال بر اینکه نقصها یا بی‌نظمیهای شبکه در سطح کاتالیزور ، جای فعالی برای عمل کاتالیزور است، اولین فرضیه برای توضیح عمل تقویت کننده‌های کاتالیزورهای مناسب است. تقویت کننده ها موادی هستند که فعالیت کاتالیزور ها را زیاد می‌کنند. مثلا در سنتز آمونیاک

(N2(g)+3H2(g)----------->2NH3(g


اگر کاتالیزورآهن با مقدار کمی پتاسیم یا وانادیم آمیخته شده باشد، بیشتر موثر واقع می‌شود.

سموم کاتالیزور

سموم کاتالیزور موادی هستند که کاتالیزورها را از فعالیت باز می‌دارند. مثلا مقدار کمی آرسنیک توانایی پلاتین را که کاتالیزور تبدیل سولفور دی‌اکسید ،به سولفور تری‌اکسید است، از بین می‌برد.

(2SO2(g)----------->2SO2(g


احتمالا در این عمل بر سطح پلاتین ، پلاتینم ارسیند تشکیل می‌شود و فعالیت کاتالیزوری از میان می‌رود. جذب اتیلن ، کاتالیزور را موقتا مسموم می‌کند، درحالیکه جذب پلاتین ، کاتالیزور را بطور دائم مسموم می‌کند.

اختصاصی بودن فعالیت کاتالیزور

فعالیت کاتالیزورها عمدتا بسیار اختصاصی است. در پاره‌ای موارد ، کاتالیزور معین موجب سنتز نوعی محصولات خاص از بعضی مواد می‌شود، حال آنکه کاتالیزور دیگر موجب سنتز محصولات کاملا متفاوت دیگری از همان مواد می‌شود. البته در این موارد امکان وقوع هر دو واکنش از لحاظ ترمودینامیکی میسر است. مثلاکربن مونوکسید و هیدروژن بر هم اثر می‌کنند و بسته به شرایط واکنش و نوع کاتالیزور مصرف شده ، محصولات بسیار متنوعی ایجاد می‌کنند.

اگر کبالت یا نیکل بعنوان کاتالیزور بکاربرده شود، مخلوطی از هیدروکربنها بوجود می‌آورد. در این جا نیکل بعنوان یک کاتالیزور نامرغوب عمل می‌کند.

CO(g)+3H2(g)------------>CH4(g)+H2O


و اگر مخلوطی از روی و اکسید کرم بعنوان کاتالیزور مصرف شود، از واکنش متانول تولید می‌شود.

(CO(g)+2H2(g)------------>CH3OH(g


برای این واکنش ، نیکل یک کاتالیزور مرغوب است.کاتالیزور مرغوب کاتالیزوری است که انتخابی عمل کند.

غیر فعال شدن کاتالیزور

معمولا تمام کاتالیزورها دارای یک عمر معین هستند که پس از سپری شدن آن فعالیت موثر آنها کاهش می‌یابد که ممکن است بطور ناگهانی یا تدریجی باشد (افت فعالیت). در چنین مواقعی معمولا بسته به نوع و مکانیسم غیر فعال شدن ، باید کاتالیروز را بازیابی یا جایگزین کرد. در این مواقع باید تصمیم بگیریم که آن را تعویض یا احیا کنیم. تصمیم بر اساس مکانیسم های غیر فعال شدن است و مهمترین و متداولترین مکانیسم غیر فعال شدن عبارت است از:

  1. در کاتالیزورهای نفتی ، تجزیه هیدروکربن‌ها در دمای بالا موجب تشکیل لایه ضخیمی از کربن غیر فعال روی سطوح کاتالیزور می‌گردد که همین دوره باعث می‌شود که روی سایت کاتالیزور پوشیده و از کار می‌افتد.
  2. پدیده دوم مربوط به مسموم شدن کاتالیزور می‌باشد. این پدیده زمانی اتفاق می‌افتد که ماده جذب شونده باعث تعییر آرایش کاتالیزور می‌شود. آرایش بلوری در فعالیت کاتالیزور نقش اساسی دارد. تغییر آرایش بلوری باعث غیر فعال شدن آن می‌شود. عواملی مانند سولفور این پدیده را ایجاد می‌کند.
  3. عامل سوم مربوط به وجود ناخالصیهای فلزی در سطح کاتالیزور می‌باشد. این ناخالصیها در مناطق فعال ، جذب و فعالیت کاتالیزور را کاهش می‌دهند.
  4. اورگانومتالیکهای فلزی معمولا به مقدار بسیار به عنوان کاتالیستها مورد استفاده قرار می‌گیرند. از تجزیه ناخواسته این کاتالیستها در دمای بالا اورگانومتالیکهای تیتانیم و وانادیم ایجاد شده، ضمن بلوکه کردن کانالهای کاتالیکی باعث کاهش فعالیت کاتالیزوری می‌شوند.
  5. معمولا ساختمان کاتالیزورها یک ساختمان متخلخل و پرزدار است. حفره‌ های میکرونی در روی کاتالیزور وجود دارد که شوکهای حرارتی باعث مسدود شدن این میکرو پرزها می‌گردد. بنابراین شوکهای حراراتی ممکن است فعالیت کاتالیزورها را کاهش دهد.

بازیابی کاتالیزور

  • کاتالیزور را می‌توان با عبور هوای گرم احیا کرد.
  • در مکانیسم های دیگر از وجود ناخالصیها که باعث مسموم شدن کاتالیزور می شود جلوگیری کرد.

طبقه بندی سیستم های کاتالیکی

عملکرد کاتالیزورها در دو فار هموژن و هتروژن انجام می‌گردد. فاز هموژن حالتی است که مواد واکنش‌دهنده و کاتالیزور در یک فاز قرار می‌گیرند. حال آنکه اگر عملکرد کاتالیزور و مواد واکنش‌دهنده در دو فاز مختلف باشد و مرز فیزیکی بین کاتالیزور و مواد واکنش‌دهنده وجود داشته باشد، چنین فازی را هتروژن می‌گویند.

کاتالیزورهای جامد

  1. جامد فلزی:

    مناسب واکنشهایی هستند که مواد واکنشی از هیدروژن و یا هیدرو کربن تشکیل شده‌اند. عمده کاتالیزورهای این دسته از عناصر واسطه تشکیل می‌گردد. مثل نقره ، پلاتین ، آهن و نیکل و پالادیم.

    معمولا ویژگی این فلزات و کاتالیزورها به گونه ای است که هم هیدروژن و هم هیدروکربن به راحتی در سطح این کاتالیزورها جذب می‌گردند. این کاتالیزورها برای واکنشهای هیدروژن و هیدروژن‌گیری مناسب است و برای واکنشهای اکسیداسیون مناسب نیست، چون احتمال اکسید شدن خود فلزات هم وجود دارد.
  2. کاتالیزورهای اکسید فلزی:

    اکسید روی ، اکسید نیکل ، اکسید منگنز ، اکسید کروم ، اکسید بیسموت ، اکسید مولیبدن. ویژگی این کاتالیزورها در این است که می‌توانند در واکنش ، اکسیژن مبادله کنند (یعنی می‌توانند اکسیژن را دوباره به حالت اول برگردانند).
  3. کاتالیزروهای اکسید فلزی _ عایق:

    اکسید منیزیم ، اکسید آلومینیم ، سیلیس. این کاتالیزورها بعنوان جاذبه الرطوبه مورد استفاده قرار می‌گیرند.
  4. کاتالیزورهای زیگلر _ ناتا:

    در پلیمریزاسیون استفاده می‌شود. نسل جدیدی از کاتالیزورهای زیگلر _ ناتا در متالوسیون استفاده می‌شود.

عوامل موثر در فعالیت کاتالیزور

  • سطح کاتالیزور
  • قدرت و استحکام پیوند جذبی

راههای افزایش سطح کاتالیزور

  • پودر کردن یعنی افزایش سطح کاتالیزور بطریق فیزیکی
  • ایجاد خلل و فرج و کانالهای بسیار ظریف میکروسکوپی در بدنه کاتالیزور
  • نشاندن کاتالیزور روی بستری از آلومینا و زئولیت
  • متخلخل کردن کاتالیزور

کاربرد کاتالیزور

کاتالیزور در سه بخش به کار می رود:

  1. صنعت اتومبیل:

    در این بخش کاتالیزورها بصورت مستقیم و غیرمستقیم استفاده می‌شوند. در اگزوز اتومبیلها بستری از فلزات جامد مثل پلاتین روی پایه آلومینات قرار گرفته و هیدروکربنهای مضر مثل منوکسید کربن و غیره را جذب می‌کند.
  2. صنعت نفت و پالایش مواد نفتی:

    عمده ترین مصرف کاتالیزورها در صنعت نفت در دو پروسه کراکینگ (شکستن مولکولهای درشت به کوچک) و رفرمینگ (دوباره باز آرائی و ترکیب مولکولهایی برای تولید) می‌باشد.

    در صنعت نفت بیشتر کاتالیزورهای زیگلر _ ناتا، کاتالیزورهای فلزی و اورگانومتالیک مثل رودیوم استفاده می‌شود.
  3. تولید مواد شیمیایی

مباحث مرتبط با عنوان

+ نوشته شده در  سه شنبه چهارم بهمن 1390ساعت 0:20  توسط محمدرضا خسروی(MR)  | 

نحوه تشکیل زئولیتها به روش طبیعی

زئولیتها دارای منشا طبیعی بوده و به روش مصنوعی نیز تولید می‌شوند.

دریاچه‌های قلیایی و نمکی

دریاچه‌های قلیایی و یا نمکی واقع در مناطق گرم و خشک در بخشی از آب اسیدیته PH آن به حدود 9.5 می‌رسد، محیط مناسبی برای تشکیل زئولیتهاست. موادی که در این دریاچه‌ها می‌توانند به زئولیت تبدیل شوند عبارتند از شیشه‌های طبیعی ، توفها ، کائولینیت ، مونتموریونیت و پلاژکلاز. زئوایتهای که در این محیط تشکیل می‌شوند، عبارتند از فیلیسپیت ، کلینوپتالیت ، اریونیت و به مقدار کمتر موردنیت و منشا بازیت. علاوه بر زئولیتها ، فلدسپات سدیم ، فلدسپات پتاسیم و کانیهای بردار نیز تشکیل می‌شوند.

تشکیل زئولیتها در محدوده زمانی کمتر از 1000 سال انجام می‌شود. زون بندی در یک لایه توف واقع در یک دریاچه قلیایی از حاشیه به طرف مرکز دریاچه شامل ، توف تازه به همراه مقدار جزئی کانی رسی (به دلیل PH کمتر از 8) ، وزن تشکیل زئولیت‌ها به دلیل افزایش PH و میزان نمکها ، زون آنالیست و زون تشکیل فلدسپات به دلیل غلظت زیاد نمکها. زون بندیی که در یک منطقه حاوی زئولیت دیده می‌شود عبارت است از وزن شیشه طبیعی ، زون کانیهای رسی ، زون کلینوپتالیت و فیلیپسیت ، زون آنالیسم و زون پتاسیم فلدسپات.

آلتراسیون

از تاثیر محلولهای گرمایی در شرایط مناسب زئولیتها تشیل می‌شوند. معمولا کلینوتپالیت و موردنیت در اعماق کمتر (دمای کمتر) و آنالیست ، هیولاندیت ، لامونتیت و واراکتیت در اعماق بیشتر (دمای بالاتر) تشکیل می‌شوند.

مناطق با سیستم آبهای باز

خاکستر و دیگر مواد پیروپلاستیکی اسید - حد واسط سخت نشده (تفرا) تحت تاثیر آبهای سطحی و زیرزمینی قرار گرفته و تغییراتی از سطح به عمق در آنها ایجاد می‌شود. از هیدرولیز شیشه و سایر مواد در نزدیکی سطح زمین کانیهای رسی بویژه اسمکتیت تشکیل می‌شود. با محل مواد به اعماق بیشتر ضمن افزایش PH شرایط برای تبدیل شیشه به زئولیتها فراهم می‌شود. خاکستر و مواد پیروپلاستیکی که در محیط خشکی تشکیل شده‌اند تا اعماق 20 تا 500 متر حاوی کانیهای رسی بوده و بعد از آن در صورت مناسب بودن PH آبهای زیرزمینی زئولیتها تشکیل می‌شوند.

خاکهای محیطهای قلیایی

در محیطهای خشک و نیمه خشک به دلیل تبخیر زیاد کربنات و بی‌کربنات سدیم در افق سطحی خاک افزایش یافته و با افزایش PH محیط برای تشکیل زئولیتها مناسب می‌شود. محدوده تشکیل زئولیتها از سطح آبهای زیرزمینی به طرف سطح زمین است.

رسوبات عمیق دریا

توفها و رسوبات عمیق دریایی تحت تاثیر چرخه‌های آبهای گرم قرار گرفته در شرایط مناسب می‌توانند به زئولیت آلتره شوند.

تولید زئولیت به روش مصنوعی

  • ابتدا 2H2O ، AL2O3 را در محلول داغ NaOH حل و سپس با سیلیکات سدیم (Na2SiO3) مخلط می‌نمایند، مخلوط حاصل به مخازن ویژه تشکیل ژل منتقل می‌شود. بلورهای زئولیت در دمای حدود 94 درجه سانتیگراد از محلول ژل شروع به تبلور می‌نمایند.
  • آلتراسیون کائولین : ابتدا کائولین حرارت داده می‌شود تا به متاکائولین تبدیل شود بعد از آن را کلسینه نموده و سپس با استفاده از محلول اسیدی مقداری از سیلیس آن را آزاد نموده محصول را با NaOH شستشو می‌دهند.

موارد مصرف زئولیتها

فیلترملکولی

زئولیتها چنانچه در دمای 350 تا 400 درجه سانتیگراد برای مدت چند ساعت حرارت داده شوند آب موجود در مجاری و فضای کانال مانند آزاد و به زئولیت بدون آب تبدیل می‌شود. قطر فضاهای کانال مانند مشخص و تابع ترکیب شیمیایی زئولیت است. قطر این فضا در زئولیت پتاسیم‌دار 13 آنگستروم ، سدیم‌دار 4 آنگستروم و برای کلسیم‌دار 5 آنگستروم است. موادی که ابعاد ملکول آنها کمتر از قطر فضای زئولیت باشد جذب شده و آنهایی که بزرگتر هستند جذب نخواهند شد.

به عنوان مثال زئولیتی که قطر کانال آن 4.5 آنگستروم است، می‌تواند هیدروکربوری مانند اکتان و نپتان را که قطر آنها حدود 4.3 آنگستروم است جذب نماید و هیدروکربورهای ایزواکتان و ایزوپنتان را که قطر آنها 5 آنگستروم است جذب نماید. با استفاده از زئولیتها می‌توان این مواد هیدروکربوری را از یکدیگر جدا نمود.

کنترل آلودگی

کلینوپتالیت به علت داشتن خاصیت جانشینی یونی ، می‌تواند ایزوتوپهای سزیم و استرانسیم را که دارای خاصیت رادیواکتیویته هستند، به خود جذب نماید. محلولهای حاوی کاتیونهای رادیواکتیو را از ستون حاوی کلینوپتالیت عبور می‌دهند، آنگاه مواد رادیواکتیو جذب کلینوپتالیت می‌شوند.

پس کلینوپتالیت اشباع از مواد رادیواکتیو را در محیطهای مناسب دفن می‌نمایند آمونیاک موجود در پسابها ، آبهای کشاورزی ، محیط نگهداری دام و طیور را می‌توان با استفاده از کلینوپتالیت مهار نمود. گازهای CO2 , SO2 را که در کارخانه‌ها تولید می‌شوند می‌توان با استفاده از زئولیتها به میزان قابل توجهی کنترل نمود.

تولید اکسیژن

بعضی از زئولیتها نیتروژن را بطور انتخابی جذب می‌نمایند. ژاپنیها با ساختن دستگاهی که در آن از موردنیت استفاده شده ، توانسته‌اند اکسیژن را از هوا تهیه نمایند. اکسیژن تولید شده تا 90 درصد خالص است.

تصفیه گاز

برای جداسازی دی‌اکسید کربن و کاهش میزان رطوبت گازهای طبیعی از زئولیتها می‌توان استفاده کرد.

انرژی خورشیدی

از زئولیتها بویژه شابازیت و کلینوپتالیت در ذخیره سازی انرژی خورشیدی استفاده می‌شود. زئولیتهای نامبرده در طول روز ، آب خود را از دست می‌دهند و در فاصله شب و به هنگام جذب رطوبت می‌توانند انرژی ذخیره شده در طول روز را آزاد نمایند.

کشاورزی

زئولیتها را در کشاورزی برای بهبود کیفیت خاک ، تهیه خوراک حیوانات و همچنین در تهیه حشره کشها بکار می‌برند.

مصارف دیگر

پیش از این زئولیتها به دلیل وزن مخصوص پایین آنها به عنوان مصالح سبک وزن استفاده می‌شده است. اینک زئولیتها را به عنوان ماده پر کننده در کاغذ استفاده می‌کنند. مزایای زئولیت نسبت به کائولین درصد اوپاکی بیشتر ، سهولت برش و کاهش وزن آن است. در خمیر دندان از زئولیت به دلیل قابلیت پویش بهتر نسبت به CaHPO4 و باقی ماندن فلورید به صورت یونی استفاده می‌شود.

زئولیت در ایران

در مناطق اشلق چای و نی باغ (میانه) ، سمنان ، طلعه (ورامین) ، رودهن ، طالقان و قلعه عسکر (کرمان) زئولیت عمدتا در سنگهای آتشفشانی گزارش شده است.

+ نوشته شده در  سه شنبه چهارم بهمن 1390ساعت 0:16  توسط محمدرضا خسروی(MR)  | 

اشنایی با زئولیت ها

به طور کلی از کاربردهای مهم زئولیتها در سه بخش جذب شوینده ها و کاتالیزورهاست.از جمله مصارف جهانی زئولیتها در سه بخش کاربردی واحد صنعتی ٬ دو جداره کردن پنجره ها و به عنوان عامل اتصال دهنده ی آب در سیستم های پلی یورتان است.زئولیتها در اصل مواد الومینو سیلیکاتی هستند که دارای ساختار کریستالی می باشند  آلومینو فسفاتها و سیلیکوآلومینو فسفاتها (SAPO) نیز با ساختار زئولیتی ساخته شده اند ولی هنوز از اهمیت صنعتی برخوردار نیستند. شناسایی زئولیتها برای نخستین بار توسط کرونستد کانی شناس سوئدی صورت گرفت.

 

از لحاظ شیمیایی زئولیتها به کمک نسبت Si/Al موجود در چارچوب آنیونی آنها از یکدیگر متمایز می شوند. این نسبت بین یک  و بی نهایت در زئولیت سیلیکالیت (یک نوع اصلاح شده ی سیلیکای بلوری عاری از الومینیم ) متغیر است.مقاومت اسیدی و پایداری گرمایی زئولیتها با افزایش نسبت Si/Al افزایش می یابد.زئولیتها در ساختارهای متعددی وجود دارند. واحدهای پایه معمولا چهاروجهی های SiO4 و AlO4 هستند که توسط اتمهای اکسیژن اشتراکی به هم متصل شده اندماهیت زئولیتها از روی سیستم حفرات موجود در چارچوب آنها مشخص می شود به طوری که حجم این حفرات مشخصه ی نوع زئولیت خواهد بود. این حفرات توسط منافذی به هم مرتبط شده اند و قطر این منافذ نیز نوع زئولیت را تعیین خواهد کرد.

 

زئولیتهای طبیعی : حدود 40 نوع زئولیت در طبیعت شناخته شده است که تعدادی از آنها از اهمیت صنعتی برخوردارند.زئولیتهای طبیعی نتیجه ی غیر مستقیم فعالیتهای آتشفشانی هستند و از طریق دگرگونی هیدروترمال بازالت ٬ خاکستر آتشفشانی و سنگ پا تشکیل می شوند ( در حفرات بازالتی و در کانسارهای رسوبی بزرگ یافت می شوند.)

 

زئولیت به عنوان جذب کننده : مولکولهایی که برای نفوذ به درون منافذ زئولیتها به قدر کافی کوچک هستند می توانند شدیدا به زئولیتها متصل شوند. این مسئله به ویژه در مورد آب و سایر مولکولهای قطبی و قطبش پذیر کوچک صدق می کند و اساس کاربرد این مواد به عنوان خشک کننده یا تمیز کننده برای گازهایی نظیر گاز طبیعی یا هوا قبل از مایع شدن را تشکیل می دهد. به علاوه از زئولیتها برای خارج نمودن اب از مدارهای بسته ی مایع ( مثلا در واحدهای منجمدسازی جهت جذب آب و جذب حلال باقی مانده در فضای بین شیشه ی پنجره های دو جداره به منظور جلوگیری از چگالش ) نیز استفاده می شود. زئولیتها به صورت صنعتی جهت خارج کردن دی اکسید کربن ٬سولفید هیدروژن ٬مرکاپتانها و غیره از مخلوط گازی به کار میرود. زئولیتها در ذخیره سازی گرما هم استفاده می شودبه این صورت که در اثر جذب آب توسط زئولیتها هوای مرطوب گرم می شود و به دنبال آن به کمک انرژی خورشیدی زئولیتها آب زدایی می شوند.

 

زئولیت پاک کننده ی محیط زیست : زئولیتها می توانند در محیط زندگی ابزیان آمونیم را که وجود آن حتی در حد چند گرم در تن مسمومیت زا می باشد جذب کنند که علاوه بر جذب آلودگی ها به تامین اکسیژن ماهی ها هم کمک کنند.

 

زئولیتها برای فرایندهای جداسازی : در حفرات زئولیتها میدانهای الکتروستاتیکی شدید وجود دارد. به همین دلیل نیتروژن که قطبش پذیر است در زئولیتها به مراتب مقیدتر از اکسیژن می باشد. به کمک چرخه های چند مرحله ای جذب _واجذب تحت فشار امکان تولید هوای غنی از اکسیژن وجود دارد که می تواند در تاسیسات فاضلاب یا فولاد کاری استفاده شود. زئولیتها می توانند نقش غربال مولکولی داشته باشند مثلا مخلوطهای n- و ایزوآلکانها می توانند جداسازی شوند زیرا فقط n- آلکانها امکان نفوذ به داخل حفرات زئولیت را دارند.

 

زئولیتها به عنوان کاتالیزورها: فرایندهای مهمی که در آنها زئولیتها به عنوان کاتالیزور به کار برده می شوند عبارتند از : 1) در ایزومریزاسیون n- آلکانها به ایزوالکانها جهت مقاصد سوختی. 2) در کراکینگ کاتالیزوری محصول تقطیر نفت خام برای تولید سوخت. 3) در تولید سوختها آلکنها یا ارنها از متانول ٬ موم زدایی الکانها ٬ آلکیل دار کردن بنزن و تبدیل آن به اتیل بنزن به کار برده می شود.4) در هیروکراکینگ (تبدیل برشهای نفت خام به بنزین در حضور هیدروژن ) مورد استفاده قرار می گیرد. زئولیت به عنوان کاتالیزور هیدروژن دار کردن حاوی پالادیوم یا پلاتین می باشد.

 

از دیگر کاربردهای زئولیت : مقادیر زیادی از سنگ های زئولیت دار در کشورهای مختلف تحت فراوری قرار می گیرد و در تولید سیمانها ملاتها و بلوکهای سبک ساختمانی به کار برده می شود. در ژاپن از زئولیتهای طبیعی به عنوان پرکننده در صنعت کاغذ استفاده می گردد.

+ نوشته شده در  سه شنبه چهارم بهمن 1390ساعت 0:14  توسط محمدرضا خسروی(MR)  |